

University of Dundee

100 years of suramin

Wiedemar, Natalie; Hauser, Dennis A.; Mäser, Pascal

Published in: Antimicrobial Agents and Chemotherapy

DOI: 10.1128/AAC.01168-19

Publication date: 2020

Document Version Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA): Wiedemar, N., Hauser, D. A., & Mäser, P. (2020). 100 years of suramin. Antimicrobial Agents and Chemotherapy, 64(3), 1-14. [e01168]. https://doi.org/10.1128/AAC.01168-19

General rights

Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
 You may freely distribute the URL identifying the publication in the public portal.

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

AAC Accepted Manuscript Posted Online 16 December 2019 Antimicrob. Agents Chemother. doi:10.1128/AAC.01168-19 Copyright © 2019 American Society for Microbiology. All Rights Reserved.

1	One Hundred	Years	of Suramin

_

2		
3		
4	Na	atalie Wiedemar ^{1,2} , Dennis A. Hauser ^{1,2} and Pascal Mäser ^{1,2}
5		
6		
7	1	Swiss Tropical and Public Health Institute
8		Dept. Medical Parasitology and Infection Biology
9		Socinstrasse 57
10		4051 Basel
11		Switzerland
12		
13	2	University of Basel
14		Petersplatz 1
15		4001 Basel
16		Switzerland

Antimicrobial Agents and Chemotherapy

17 Abstract

18 Suramin is a hundred years old and still being used to treat the first stage of acute human sleeping 19 sickness, caused by Trypanosoma brucei rhodesiense. Suramin is a multifunctional molecule with a 20 wide array of potential applications, from parasitic and viral diseases to cancer, snakebite and 21 autism. Suramin is also an enigmatic molecule: What are its targets? And how does it get into cells 22 in the first place? Here we provide an overview on the many different candidate targets of suramin, discuss modes of action, and routes of cellular uptake. We reason that once the polypharmacology 23 24 of suramin is understood at the molecular level, new, more specific, and less toxic molecules can be 25 identified for the numerous potential applications of suramin.

AA

26 Suramin, the fruit of early medicinal chemistry

27 When suramin was introduced for the treatment of African sleeping sickness in 1922, it was one of 28 the first anti-infective agents that had been developed in a medicinal chemistry program. Starting 29 from the antitrypanosomal activity of the dye trypan blue, synthesized in 1904 by Paul Ehrlich, 30 Bayer made a series of colorless and more potent derivatives. Molecule 205 was suramin (Figure 1), 31 synthesized by Oskar Dressel, Richard Kothe and Bernhard Heymann in 1916. Sleeping sickness 32 (also known as human African trypanosomiasis, HAT) was at the forefront of research at that time, 33 not a neglected disease as it is today, and the development of suramin was a breakthrough for the 34 emerging field of chemotherapy. While the history of suramin has been reviewed elsewhere (1), we 35 focus here on the many potential applications of suramin and its enigmatic mode of action.

36

37 Suramin as an antiparasitic drug

38 Suramin is still being used for the treatment of Trypanosoma brucei rhodesiense infections (2). 39 However, it does not cross the blood-brain barrier and therefore is administered only for the first, 40 hemolymphatic stage of sleeping sickness, when the trypanosomes have not yet invaded the 41 patient's CNS. The standard treatment regimen for suramin is an initial test dose of 4-5 mg/kg 42 followed by five weekly doses of 20 mg/kg (but not more than 1 g) injected i.v. (3). Suramin is also 43 used for Surra (mal de caderas), caused by T. evansi, in particular for the treatment of camels (4). 44 The treatment regimen is a single injection i.v. of 10 mg/kg suramin, i.e. about 6-10 g (4). In vitro, 45 suramin also has some activity against T. cruzi (5). However, it is not used for Chagas' disease, and 46 studies in mice even suggested that suramin would exacerbate the disease (6). In vitro activity of 47 suramin against Leishmania major and L. donovani has recently been described (7). Furthermore, 48 suramin blocks host cell invasion by the malaria parasite *Plasmodium falciparum*. This was 49 observed for both the invasion of erythrocytes by P. falciparum merozoites (8) and the invasion of 50 HepG2 hepatoma cells by P. falciparum sporozoites (9).

Chemotherapy

51 Suramin had been in use for river blindness, caused by the filarial parasite Onchocerca 52 volvulus (10). It acts on both microfilariae and, to a larger extent, on adult worms (11, 12). 53 However, suramin was subsequently replaced by the less toxic, and orally bioavailable, ivermectin 54 (13, 14). The adverse effects of suramin are indeed manifold, including nephrotoxicity, 55 hypersensitivity reactions, dermatitis, anemia, peripheral neuropathy and bone marrow toxicity (3, 56 15). But despite its potential toxicity, the lack of bioavailability, and absence of lead-like properties 57 (Figure 1), suramin has found a surprising variety of repurposing applications. Table 1 provides an 58 overview on the biological activities of suramin and Table 2 lists clinical trials performed with 59 suramin.

60

61 Suramin as an antiviral agent

62 The antiviral and antibacteriophage activities of suramin are known since the mid-20th century (19, 63 20). Soon after the discovery of retroviruses, suramin was found to inhibit retroviral reverse 64 transcriptase (21), which served as a rationale to test suramin against human immunodeficiency 65 virus (HIV). Suramin protected T-cells from HIV infection in vitro (22), and in AIDS patients it 66 reduced the viral burden in some of the study subjects; however, no improvement of the 67 immunological features and clinical symptoms was achieved (17, 23, 24). Later-on suramin was 68 found to inhibit host cell attachment through binding to the HIV-1 envelope glycoprotein gp120, 69 indicating that the *in vitro* protection against HIV infection is mediated through inhibition of viral 70 entry (25).

Suramin also inhibits the binding of Dengue virus to host cells through a direct effect on the viral envelope protein (26). Inhibition of host cell attachment was also found for Herpes simplex (27) and Hepatitis C viruses (28), which explained the previously reported protective effects of suramin against *in vitro* herpes simplex infections (29) and *in vivo* infections of ducks with Duck Hepatitis B Virus (30). Similar to the experience with HIV, suramin had initially been tested against Hepatitis viruses due to its inhibitory effect on the viral DNA polymerase (31, 32).
But in a small clinical trial suramin was found to be ineffective and toxic in chronic active Hepatitis
B patients (18). Suramin neutralized enterovirus 71 (EV71) in cell culture and in a mouse model by
binding to capsid proteins (33–35).

Suramin also bears potential against emerging viruses. It was shown to inhibit both RNA synthesis and replication in Chikungunya virus (36). *In vitro* suramin conferred protection if present at the time of infection, and this was attributed to a reduction of viral host cell binding and uptake (37). In the murine model suramin led to a reduction of pathognomonic lesions if injected prior to Chikungunya infection (38). Suramin also inhibited host cell invasion by Ebola virus (39) and Zika virus, even when added after viral exposure of the cell cultures (40).

86

87 Suramin against cancer

88 The first studies on the effects of suramin on neoplasms in animals were carried out in the 1940's; 89 mice engrafted with lymphosarcoma developed significantly smaller tumors when simultaneously 90 treated with suramin (41). In the 1970's it was shown that suramin can enhance the action of 91 cyclophosphamide and adriamycin in mice engrafted with Ehrlich carcinoma (42). A first clinical 92 trial with suramin was carried out in the 1980's in advanced-stage adrenal and renal cancer 93 patients (16). Around half of the patients showed either partial or minimal responses, none showed 94 complete remission. Nevertheless, a number of subsequent clinical trials with suramin were carried 95 out (Table 2). In particular, suramin was tested against prostate cancer (43-51), non-small cell lung 96 cancer (52), breast cancer (52), bladder cancer (53, 54) and brain tumors (55, 56). Most of these 97 studies were based on the potential of suramin to act as an antagonist of growth factors (57–59), 98 which are often overexpressed by tumors. In addition, suramin directly exhibits cytostatic activity 99 on cultured tumor cells (60-62). However, the initial clinical tests did not warrant the further 100 development of suramin as an anticancer monotherapy.

101 Subsequent tests focused on suramin as a chemosensitizer, based on the findings that at sub-102 cytotoxic levels ($<50 \mu$ M), it enhanced the efficacy of anticancer drugs such as mitomycin C, taxol 103 or doxorubicin in ex vivo cultures and in animal models (63-65). Suramin combined with taxol 104 inhibited invasiveness and prevented metastasis in a xenograft mouse model (66). Different 105 explanations are conceivable for the chemosensitizing effects of suramin on tumor cells, including 106 inhibition of telomerase (67) or inhibition of fibroblast growth factors and angiogenesis (68). A 107 phase II clinical study was performed in patients with advanced, drug-resistant, non-small cell lung 108 cancer treated with taxol or carboplatin; supplementation with nontoxic doses of suramin did not 109 overcome drug resistance (69). Randomized controlled studies to validate the use of suramin as a 110 chemosensitizer in chemotherapy-naive lung cancer patients remain to be performed. A 111 combination of estramustine, docetaxel and suramin gave promising results in hormone-refractory 112 prostate cancer patients (51).

113

114 Suramin as an antidote

115 Three of the many biological activities of suramin support a potential use as a protective agent: the 116 inhibition of thrombin, the inhibition of phospholipase A2, and the inhibition of purinergic 117 signaling. Several vipers possess toxins that mimic thrombin (70), perfidiously triggering the 118 coagulation cascade in the mammalian blood. Suramin not only inhibits thrombin itself (71) but 119 also the thrombin-like proteases of snake venom (72), and was therefore proposed as an antidote for 120 snakebite. Other common constituents of metazoan venoms are phospholipases A2 that convert 121 phospholipids into lysophospholipids. Again, suramin inhibits mammalian phospholipase A2 (73) 122 as well as the orthologs from snake venom (74-76) and bee venom (77), suggesting that it can act 123 as an antidote. A certain degree of protection from venoms by suramin was confirmed in mouse 124 models (77-79). The potential use of suramin as an antidote is attractive given the high global 125 burden of snakebites (80) and the current shortage of antivenom (81).

Antimicrobial Agents and Chemotherapy

126 Suramin's ability to block P2 purinergic, G protein-coupled receptors (82) may counteract 127 the action of neurotoxins that trigger arachidonic acid signaling, e.g. via phospholipase A2 128 activity (83). A possible explanation is that suramin prevents the activation of ATP receptors at the motor nerve ending, which otherwise would depress Ca²⁺ currents and reduce acetylcholine release 129 130 at the presynaptic membrane (84). Suramin was also proposed to serve as a neuroprotective 131 agent (85, 86), as an antidote for kidney toxicity during cancer chemotherapy (87) and, based on its 132 antiapoptotic effect, to protect from liver failure (88). Suramin also inhibits connexin channels of 133 the tight junction, thereby suppressing ATP release and protecting cells from pore-forming bacterial 134 toxins such as hemolysin (89). The suramin analogs NF340 and NF546 were cardioprotective in a 135 mouse model for heart graft rejection, presumably via inhibition of the purinergic G protein-coupled 136 receptor P2Y11 (90).

137

138 Further potential uses of suramin

Suramin was found to have beneficial effects in a rat arthritis model (91) and to suppress fear 139 140 responses in the rat (92). It also promoted the expansion of T cells during immunization of mice and 141 was therefore considered as a small molecule adjuvant for vaccination (93). Based on the cell 142 danger hypothesis, suramin has recently been tested for the treatment of autism spectrum disorders 143 (ASD). The cell danger hypothesis suggests that a systemic stress response, which involves 144 mitochondria and purinergic signaling, contributes to the development of psychopathologies like 145 autism. Suramin had been shown to act as an inhibitor of purinergic signaling (94) and 146 mitochondrial function (95), and was therefore proposed as a potential therapy for ASD (96). First 147 tests in mouse models showed correction of symptoms in juveniles (96) as well as in adults (97). A 148 first small human trial was carried out and, even though difficult to quantify, showed improvement 149 of ASD symptoms (98).

150

151 (Too) many targets

152 Suramin is a large molecule that carries six negative charges at physiological pH (Figure 1). It is 153 likely to bind to, and thereby inhibit, various proteins (99). Thus the many and diverse potential 154 applications of suramin reflect the polypharmacology of suramin. Indeed, a large number of 155 enzymes have been shown to be inhibited by suramin (Table 3). Suramin inhibits many glycolytic 156 enzymes (100, 101), enzymes involved in galactose catabolism (PubChem BioAssay: 493189) and 157 enzymes of the Krebs cycle (102). Suramin further decreases the activity of a large number of 158 enzymes involved in DNA and RNA synthesis and modification: DNA polymerases (103, 104), 159 RNA polymerases (103, 105, 106), reverse transcriptase (21, 103), telomerase (67), and enzymes 160 involved in winding/unwinding of DNA (107, 108) are inhibited by suramin, as well as histone- and 161 chromatin modifying enzymes like chromobox proteins (109), methyltransferases (110) and sirtuin 162 histone deacetylases (111). Suramin is also an inhibitor of other sirtuins (112) and protein kinases 163 (113, 114), glutaminase (PubChem BioAssay: 624170), phospholipase A2 (115, 116), protein tyrosine phosphatases (117), lysozyme (118) and different serine- and cysteine-proteases (119-164 165 121). For caspases, cysteine proteases involved in apoptosis, suramin was described to act as either 166 inhibitor or activator (122, 123). Suramin further inhibits the Na⁺,K⁺-ATPase and other ATPases 167 (124-126), certain classes of GABA receptors (127, 128), and several G protein-coupled 168 receptors (129) including P2 purinoceptors and follicle-stimulating hormone receptor (130, 131). 169 Suramin also showed inhibitory effects against components of the coagulation cascade (71, 132) 170 and the complement system (133-135), and against deubiquitinating enzymes (PubChem BioAssay: 171 504865; 463106). It also interacts with prion protein, inhibiting the conversion into the pathogenic form PrP^{Sc} (136). Beside the many inhibitory activities, suramin also activates certain nuclear 172 173 receptors that act as transcription factors (137), and intracellular calcium channels (138).

174

175

176 Enigmatic mechanisms of action against African trypanosomes

177 Somewhat ironically, much less appears to be known about the targets of suramin in African 178 trypanosomes, where it has been in use for a century, than in tumor cells or viruses. Suramin was 179 shown to inhibit glycolytic enzymes of T. brucei with selectivity over their mammalian orthologues, 180 in particular hexokinase, aldolase, phosphoglycerate kinase and glycerol-3-phosphate 181 dehydrogenase (100). Intriguingly, the trypanosomal enzymes have higher isoelectric points (>9), 182 which is due to extra arginines and lysines that are absent in the mammalian orthologues (165). 183 These residues form positively charged, surface exposed 'hot spots' that were proposed to be bound 184 by the negatively charged suramin (100). Inhibition of trypanosomal glycolysis by suramin is in 185 agreement with the dose-dependent inhibition of oxygen consumption and ATP production 186 observed in trypanosomes isolated from suramin-treated rats (166). However, the glycolytic 187 enzymes of T. brucei are localized inside glycosomes (167), and it is unclear how suramin could 188 penetrate the glycosomal membrane, or if suramin could bind to glycolytic enzymes in the cytosol, 189 before they are imported into the glycosomes (168). Alternative targets proposed for the 190 trypanocidal effect of suramin are glycerophosphate oxidase (139, 169), a serine oligopeptidase 191 termed OP-Tb (170), and REL1 (171), the RNA-editing ligase of the trypanosome's kinetoplast. It is 192 unclear how suramin would pass the inner mitochondrial membrane, but suramin inhibited 193 oxidative phosphorylation in mitochondrial preparations of the trypanosomatid Crithidia 194 fasciculate (172). Suramin also appeared to inhibit cytokinesis in T. brucei, as indicated by the 195 finding that suramin treatment resulted in an increased number of trypanosomes with two 196 nuclei (173).

Downloaded from http://aac.asm.org/ on March 20, 2020 at Brought to you by the University of Dundee Library & Learning Centre

197

198 Uptake routes of suramin into cells

The negative charges of suramin (Figure 1) not only promote binding to various proteins, they alsoprevent diffusion across biological membranes. However, the majority of targets (Table 3) are

201 intracellular, and radiolabeled suramin was shown to be taken up by human endothelial and 202 carcinoma cells (174, 175) and by T. brucei bloodstream forms (166, 176). Suramin is not a 203 substrate of P-glycoprotein (177), nor of any other known transporter. Thus suramin must be 204 imported by endocytosis. Mammalian cells can take up suramin in complex with serum albumin by 205 receptor-mediated endocytosis (178). This had originally also been thought to happen in T. 206 brucei (166). However, the trypanosomes do not take up albumin by receptor-mediated 207 endocytosis (179), and LDL (low density lipoprotein) was proposed to act as the vehicle 208 instead (176). Suramin bound to LDL and inhibited the binding and uptake of LDL, while LDL 209 enhanced the uptake of suramin in bloodstream-form T. brucei (176). In contrast, overexpression in 210 procyclic T. b. brucei of Rab4, a small GTPase involved in the recycling of endosomes, decreased 211 suramin binding and uptake without affecting LDL binding or uptake (180). In the same study, 212 overexpression of a mutant Rab5, which was locked in the active, GTP-bound form, increased LDL 213 uptake without affecting suramin uptake (180). These findings indicated that, at least in the 214 procyclic trypanosomes of the tsetse fly midgut, LDL and suramin are imported independently of 215 each other.

216 The development of genome-wide RNAi screens in bloodstream-form T. brucei combined 217 with next-generation sequencing offered new opportunities to address the genetics of drug 218 resistance. This approach identified genes, silencing of which reduced the sensitivity to 219 suramin (181). These included a number of genes encoding for endosomal and lysosomal proteins, 220 in agreement with uptake of suramin through endocytosis. The invariant surface glycoprotein 221 ISG75 was identified as a likely receptor of suramin since knock-down of ISG75 in bloodstream-222 form T. brucei decreased suramin binding and suramin susceptibility (181). ISG75 is a surface 223 protein of unknown function whose abundance is controlled by ubiquitination (182). Thus, there 224 appear to be (at least) two pathways for receptor-mediated endocytosis of suramin in T. brucei

-9-

bloodstream forms: either directly with ISG75 as the receptor or, after binding of suramin to LDL,together with the LDL receptor.

227

228 Conclusion

Suramin remains controversial. Is its polypharmacology a liability or an asset? Is it toxic or 229 230 protective? Dated or timeless? Whatever the verdict on suramin, there is hardly a molecule with as 231 many biological activities. The list of potential targets is indeed impressive, and the publication 232 stream on suramin is not stagnating. The large majority of papers is not about trypanosomes or 233 trypanosomiasis (Figure 2). The list of potential targets has to be taken with a grain of salt, though, 234 since the negative charges of suramin, and its promiscuity in protein binding, can cause all kinds of 235 artefacts. Suramin can dissolve matrigel (183), resulting in a false positive signal in cell-based 236 screening campaigns that use matrigel for support, e.g. for inhibitors of angiogenesis (183). On the 237 other hand, suramin's high affinity to albumin (184) may give false negative results in cell-based 238 tests that contain mammalian serum. But in spite of the various confounders, a number of different 239 drug-target interactions for suramin have been experimentally validated, and are directly supported 240 by crystal structures (Table 4).

241 Several routes of investigation on the bioactivities of suramin have culminated in clinical 242 trials with healthy volunteers (i.e. phase I) or patients (i.e. phases II and III; Table 2). Yet, to our 243 knowledge, none of these trials was a striking success, and it is unclear whether suramin will ever 244 find medical applications outside the field of parasitology. However, molecules that act in a similar 245 way than suramin may be identified via target-based screening once the mode of action is 246 understood – new molecules that are more specific, less toxic, and possess better pharmacological 247 properties than suramin. Thus it will be important to dissect the polypharmacology of suramin at the 248 molecular level. We hope that the compiled list of targets (Table 3) will serve this purpose.

- 10 -

249 Acknowledgments

- 250 We are grateful to the Swiss National Science Foundation for financial support and to Prof. Alan
- 251 Fairlamb for sharing insights into the possible molecular interactions of suramin.

AAC

252 References

253	1.	Wainwright M. 2010. Dyes, trypanosomiasis and DNA: a historical and critical
254		review. Biotech Histochem Off Publ Biol Stain Comm 85:341–354.
255	2.	Brun R, Blum J, Chappuis F, Burri C. 2010. Human African trypanosomiasis. Lancet
256		Lond Engl 375:148–159.
257	3.	Burri C, Chappuis F, Brun R. 2014. Human African Trypanosomiasis, p. 606–691. In
258		Manson's Tropical Diseases, 23rd ed. Saunders Ltd.
259	4.	Giordani F, Morrison LJ, Rowan TG, DE Koning HP, Barrett MP. 2016. The animal
260		trypanosomiases and their chemotherapy: a review. Parasitology 143:1862–1889.
261	5.	Bisaggio DFR, Adade CM, Souto-Padrón T. 2008. In vitro effects of suramin on
262		Trypanosoma cruzi. Int J Antimicrob Agents 31:282–286.
263	6.	Santos EC, Novaes RD, Cupertino MC, Bastos DSS, Klein RC, Silva EAM, Fietto
264		JLR, Talvani A, Bahia MT, Oliveira LL. 2015. Concomitant Benznidazole and
265		Suramin Chemotherapy in Mice Infected with a Virulent Strain of Trypanosoma
266		cruzi. Antimicrob Agents Chemother 59:5999–6006.
267	7.	Khanra S, Kumar YP, Dash J, Banerjee R. 2018. In vitro screening of known drugs
268		identified by scaffold hopping techniques shows promising leishmanicidal activity for
269		suramin and netilmicin. BMC Res Notes 11:319.
270	8.	Fleck SL, Birdsall B, Babon J, Dluzewski AR, Martin SR, Morgan WD, Angov E,
271		Kettleborough CA, Feeney J, Blackman MJ, Holder AA. 2003. Suramin and suramin
272		analogues inhibit merozoite surface protein-1 secondary processing and erythrocyte

273

274		47677.
275	9.	Müller HM, Reckmann I, Hollingdale MR, Bujard H, Robson KJ, Crisanti A. 1993.
276		Thrombospondin related anonymous protein (TRAP) of Plasmodium falciparum
277		binds specifically to sulfated glycoconjugates and to HepG2 hepatoma cells
278		suggesting a role for this molecule in sporozoite invasion of hepatocytes. EMBO J
279		12:2881–2889.
280	10.	Hawking F. 1958. Chemotherapy of onchocerciasis. Trans R Soc Trop Med Hyg
281		52:109–111.
282	11.	Ashburn LL, Burch TA, Brady FJ. 1949. Pathologic effects of suramin, hetrazan and
283		arsenamide on adult Onchocerca volvulus. Boletin Oficina Sanit Panam Pan Am
284		Sanit Bur 28:1107–1117.
285	12.	Burch TA, Ashburn LL. 1951. Experimental therapy of onchocerciasis with suramin
286		and hetrazan; results of a three-year study. Am J Trop Med Hyg 31:617–623.
287	13.	Babalola OE. 2011. Ocular onchocerciasis: current management and future
288		prospects. Clin Ophthalmol Auckl NZ 5:1479–1491.
289	14.	Coyne PE, Maxwell C. 1992. Suramin and therapy of onchocerciasis. Arch Dermatol
290		128:698.
291	15.	Voogd TE, Vansterkenburg EL, Wilting J, Janssen LH. 1993. Recent research on
292		the biological activity of suramin. Pharmacol Rev 45:177–203.

invasion by the malaria parasite Plasmodium falciparum. J Biol Chem 278:47670-

- 13 -

293	16.	Stein CA, LaRocca RV, Thomas R, McAtee N, Myers CE. 1989. Suramin: an
294		anticancer drug with a unique mechanism of action. J Clin Oncol Off J Am Soc Clin
295		Oncol 7:499–508.
296	17.	Kaplan I.D. Wolfe PR, Volberding PA, Feorino P. Levy JA, Abrams DI, Kiprov D.
207		Wong P. Kaufman I. Gottlieb MS 1987 Lack of response to suramin in patients
201		
298		with AIDS and AIDS-related complex. Am J Med 82:615–620.
299	18.	Loke RH, Anderson MG, Coleman JC, Tsiquaye KN, Zuckerman AJ, Murray-Lyon
300		IM. 1987. Suramin treatment for chronic active hepatitis Btoxic and ineffective. J
301		Med Virol 21:97–99.
302	19.	Reiter B, Oram JD. 1962. Inhibition of streptococcal bacteriophage by suramin.
303		Nature 193:651–652.
304	20.	Herrmann-Erlee MP, Wolff L. 1957. Inhibition of mumps virus reproduction by
305		congored and suramine. Arch Int Pharmacodyn Ther 110:340–341.
306	21.	De Clercq E. 1979. Suramin: a potent inhibitor of the reverse transcriptase of RNA
307		tumor viruses. Cancer Lett 8:9–22.
208	22	Mitsuva H. Popovic M. Varchoan P. Matsushita S. Gallo P.C. Brodor S. 1084
300	22.	
309		Suramin protection of T cells in vitro against infectivity and cytopathic effect of
310		HTLV-III. Science 226:172–174.
311	23.	Broder S, Yarchoan R, Collins JM, Lane HC, Markham PD, Klecker RW, Redfield
312		RR. Mitsuva H. Hoth DF. Gelmann E. 1985. Effects of suramin on HTI V-III/I AV
040		
513		intection presenting as kaposi's sarcoma of AIDS-related complex: clinical

- 14 -

Chemotherapy

- 314 pharmacology and suppression of virus replication in vivo. Lancet Lond Engl 2:627-315 630. Cheson BD, Levine AM, Mildvan D, Kaplan LD, Wolfe P, Rios A, Groopman JE, Gill 316 24. 317 P, Volberding PA, Poiesz BJ. 1987. Suramin therapy in AIDS and related disorders. 318 Report of the US Suramin Working Group. JAMA 258:1347-1351. 319 Yahi N, Sabatier JM, Nickel P, Mabrouk K, Gonzalez-Scarano F, Fantini J. 1994. 25. 320 Suramin inhibits binding of the V3 region of HIV-1 envelope glycoprotein gp120 to 321 galactosylceramide, the receptor for HIV-1 gp120 on human colon epithelial cells. J 322 Biol Chem 269:24349-24353. 323 26. Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM. 324 1997. Dengue virus infectivity depends on envelope protein binding to target cell 325 heparan sulfate. Nat Med 3:866-871. 326 27. Aguilar JS, Rice M, Wagner EK. 1999. The polysulfonated compound suramin 327 blocks adsorption and lateral difusion of herpes simplex virus type-1 in vero cells. 328 Virology 258:141-151. 329 Garson JA, Lubach D, Passas J, Whitby K, Grant PR. 1999. Suramin blocks 28. hepatitis C binding to human hepatoma cells in vitro. J Med Virol 57:238-242. 330 331 29. Alarcón B, Lacal JC, Fernández-Sousa JM, Carrasco L. 1984. Screening for new
 - 332 compounds with antiherpes activity. Antiviral Res 4:231–244.

Chemotherapy

333 30. Offensperger WB, Offensperger S, Walter E, Blum HE, Gerok W. 1993. Suramin 334 prevents duck hepatitis B virus infection in vivo. Antimicrob Agents Chemother 335 37:1539-1542. 336 31. Tsiquaye K, Zuckerman A. 1985. Suramin inhibits duck hepatitis B virus DNA 337 polymerase activity. J Hepatol 1:663-669. 338 32. Tsiquaye KN, Collins P, Zuckerman AJ. 1986. Antiviral activity of the polybasic 339 anion, suramin and acyclovir in Hepadna virus infection. J Antimicrob Chemother 18 340 Suppl B:223-228. 341 33. Wang Y, Qing J, Sun Y, Rao Z. 2014. Suramin inhibits EV71 infection. Antiviral Res 342 103:1-6. 343 34. Ren P, Zou G, Bailly B, Xu S, Zeng M, Chen X, Shen L, Zhang Y, Guillon P, Arenzana-Seisdedos F, Buchy P, Li J, von Itzstein M, Li Q, Altmeyer R. 2014. The 344 345 approved pediatric drug suramin identified as a clinical candidate for the treatment 346 of EV71 infection-suramin inhibits EV71 infection in vitro and in vivo. Emerg 347 Microbes Infect 3:e62. Ren P, Zheng Y, Wang W, Hong L, Delpeyroux F, Arenzana-Seisdedos F, Altmeyer 348 35. 349 R. 2017. Suramin interacts with the positively charged region surrounding the 5-fold 350 axis of the EV-A71 capsid and inhibits multiple enterovirus A. Sci Rep 7:42902. 351 36. Albulescu IC, van Hoolwerff M, Wolters LA, Bottaro E, Nastruzzi C, Yang SC, Tsay 352 S-C, Hwu JR, Snijder EJ, van Hemert MJ. 2015. Suramin inhibits chikungunya virus 353 replication through multiple mechanisms. Antiviral Res 121:39-46.

354	37.	Ho Y-J, Wang Y-M, Lu J, Wu T-Y, Lin L-I, Kuo S-C, Lin C-C. 2015. Suramin Inhibits
355		Chikungunya Virus Entry and Transmission. PloS One 10:e0133511.
356	38.	Kuo S-C, Wang Y-M, Ho Y-J, Chang T-Y, Lai Z-Z, Tsui P-Y, Wu T-Y, Lin C-C. 2016.
357		Suramin treatment reduces chikungunya pathogenesis in mice. Antiviral Res
358		134:89–96.
359	39.	Henß L, Beck S, Weidner T, Biedenkopf N, Sliva K, Weber C, Becker S, Schnierle
360		BS 2016 Suramin is a notent inhibitor of Chikungunya and Ehola virus cell entry
000		
361		Virol J 13:149.
362	40.	Tan CW, Sam I-C, Chong WL, Lee VS, Chan YF. 2017. Polysulfonate suramin
363		inhibits Zika virus infection. Antiviral Res 143:186–194.
004		
364	41.	Williams WL. 1946. The Effects of Suramin (Germanin), Azo Dyes, and Vasodilators
365		on Mice with Transplanted Lymphosarcomas. AACR 6:344–353.
366	42.	Osswald H, Youssef M. 1979. Suramin enhancement of the chemotherapeutic
367		actions of cyclophosphamide or adriamycin of intramuscularly-implanted Ehrlich
368		carcinoma. Cancer Lett 6:337–343.
369	43.	Bowden CJ, Figg WD, Dawson NA, Sartor O, Bitton RJ, Weinberger MS, Headlee
370		D, Reed E, Myers CE, Cooper MR. 1996. A phase I/II study of continuous infusion
371		suramin in patients with hormone-refractory prostate cancer: toxicity and response.
372		Cancer Chemother Pharmacol 39:1–8.
373	44.	Rosen PJ, Mendoza EF, Landaw EM, Mondino B, Graves MC, McBride JH, Turcillo
374		P, deKernion J, Belldegrun A. 1996. Suramin in hormone-refractory metastatic

- 17 -

375		prostate cancer: a drug with limited efficacy. J Clin Oncol Off J Am Soc Clin Oncol
376		14:1626–1636.
377	45.	Dawson NA, Figg WD, Cooper MR, Sartor O, Bergan RC, Senderowicz AM,
378		Steinberg SM, Tompkins A, Weinberger B, Sausville EA, Reed E, Myers CE. 1997.
379		Phase II trial of suramin, leuprolide, and flutamide in previously untreated metastatic
380		prostate cancer. J Clin Oncol Off J Am Soc Clin Oncol 15:1470–1477.
381	46.	Hussain M, Fisher EI, Petrylak DP, O'Connor J, Wood DP, Small EJ, Eisenberger
382		MA, Crawford ED. 2000. Androgen deprivation and four courses of fixed-schedule
383		suramin treatment in patients with newly diagnosed metastatic prostate cancer: A
384		Southwest Oncology Group Study. J Clin Oncol Off J Am Soc Clin Oncol 18:1043-
385		1049.
386	47.	Small EJ, Meyer M, Marshall ME, Reyno LM, Meyers FJ, Natale RB, Lenehan PF,
387		Chen L, Slichenmyer WJ, Eisenberger M. 2000. Suramin therapy for patients with
388		symptomatic hormone-refractory prostate cancer: results of a randomized phase III
389		trial comparing suramin plus hydrocortisone to placebo plus hydrocortisone. J Clin
390		Oncol Off J Am Soc Clin Oncol 18:1440–1450.
391	48.	Calvo E, Cortés J, Rodríguez J, Sureda M, Beltrán C, Rebollo J, Martínez-Monge R,
392		Berián JM, de Irala J, Brugarolas A. 2001. Fixed higher dose schedule of suramin
393		plus hydrocortisone in patients with hormone refractory prostate carcinoma a
394		multicenter Phase II study. Cancer 92:2435–2443.
395	49.	Small EJ, Halabi S, Ratain MJ, Rosner G, Stadler W, Palchak D, Marshall E, Rago
396		R, Hars V, Wilding G, Petrylak D, Vogelzang NJ. 2002. Randomized study of three

- 18 -

397		different doses of suramin administered with a fixed dosing schedule in patients with
398		advanced prostate cancer: results of intergroup 0159, cancer and leukemia group B
399		9480. J Clin Oncol Off J Am Soc Clin Oncol 20:3369–3375.
400	50.	Vogelzang NJ, Karrison T, Stadler WM, Garcia J, Cohn H, Kugler J, Troeger T,
401		Giannone L, Arrieta R, Ratain MJ, Vokes EE. 2004. A Phase II trial of suramin
402		monthly x 3 for hormone-refractory prostate carcinoma. Cancer 100:65–71.
403	51.	Safarinejad MR. 2005. Combination chemotherapy with docetaxel, estramustine and
404		suramin for hormone refractory prostate cancer. Urol Oncol 23:93–101.
405	52.	Mirza MR, Jakobsen E, Pfeiffer P, Lindebjerg-Clasen B, Bergh J, Rose C. 1997.
406		Suramin in non-small cell lung cancer and advanced breast cancer. Two parallel
407		phase II studies. Acta Oncol Stockh Swed 36:171–174.
408	53.	Ord JJ, Streeter E, Jones A, Le Monnier K, Cranston D, Crew J, Joel SP, Rogers
409		MA, Banks RE, Roberts ISD, Harris AL. 2005. Phase I trial of intravesical Suramin in
410		recurrent superficial transitional cell bladder carcinoma. Br J Cancer 92:2140–2147.
411	54.	Uchio EM, Linehan WM, Figg WD, Walther MM. 2003. A phase I study of
412		intravesical suramin for the treatment of superficial transitional cell carcinoma of the
413		bladder. J Urol 169:357–360.
414	55.	Grossman SA, Phuphanich S, Lesser G, Rozental J, Grochow LB, Fisher J,
415		Piantadosi S, New Approaches to Brain Tumor Therapy CNS Consortium. 2001.
416		Toxicity, efficacy, and pharmacology of suramin in adults with recurrent high-grade
417		gliomas. J Clin Oncol Off J Am Soc Clin Oncol 19:3260–3266.

418	56.	Laterra JJ, Grossman SA, Carson KA, Lesser GJ, Hochberg FH, Gilbert MR,
419		NABTT CNS Consortium study. 2004. Suramin and radiotherapy in newly
420		diagnosed glioblastoma: phase 2 NABTT CNS Consortium study. Neuro-Oncol
421		6:15–20.
422	57.	Hosang M. 1985. Suramin binds to platelet-derived growth factor and inhibits its
423		biological activity. J Cell Biochem 29:265–273.
424	58.	Coffey RJ, Leof EB, Shipley GD, Moses HL. 1987. Suramin inhibition of growth
425		factor receptor binding and mitogenicity in AKR-2B cells. J Cell Physiol 132:143-
426		148.
427	59.	Pollak M, Richard M. 1990. Suramin blockade of insulinlike growth factor I-
428		stimulated proliferation of human osteosarcoma cells. J Natl Cancer Inst 82:1349–
429		1352.
430	60.	Spigelman Z, Dowers A, Kennedy S, DiSorbo D, O'Brien M, Barr R, McCaffrey R.
431		1987. Antiproliferative effects of suramin on lymphoid cells. Cancer Res 47:4694–
432		4698.
433	61.	Takano S, Gately S, Engelhard H, Tsanaclis AM, Brem S. 1994. Suramin inhibits
434		glioma cell proliferation in vitro and in the brain. J Neurooncol 21:189–201.
435	62.	Guo XJ, Fantini J, Roubin R, Marvaldi J, Rougon G. 1990. Evaluation of the effect of
436		suramin on neural cell growth and N-CAM expression. Cancer Res 50:5164–5170.

437	63.	Song S, Yu B, Wei Y, Wientjes MG, Au JL-S. 2004. Low-dose suramin enhanced
438		paclitaxel activity in chemotherapy-naive and paclitaxel-pretreated human breast
439		xenograft tumors. Clin Cancer Res Off J Am Assoc Cancer Res 10:6058–6065.
440	64.	Xin Y, Lyness G, Chen D, Song S, Wientjes MG, Au JL-S. 2005. Low dose suramin
441		as a chemosensitizer of bladder cancer to mitomycin C. J Urol 174:322–327.
442	65.	Kosarek CE, Hu X, Couto CG, Kisseberth WC, Green EM, Au JLS, Wientjes MG.
443		2006. Phase I evaluation of low-dose suramin as chemosensitizer of doxorubicin in
444		dogs with naturally occurring cancers. J Vet Intern Med 20:1172–1177.
445	66.	Singla AK, Bondareva A, Jirik FR. 2014. Combined treatment with paclitaxel and
446		suramin prevents the development of metastasis by inhibiting metastatic
447		colonization of circulating tumor cells. Clin Exp Metastasis 31:705–714.
448	67.	Gan Y, Lu J, Yeung BZ, Cottage CT, Wientjes MG, Au JL-S. 2015.
448 449	67.	Gan Y, Lu J, Yeung BZ, Cottage CT, Wientjes MG, Au JL-S. 2015. Pharmacodynamics of telomerase inhibition and telomere shortening by
448 449 450	67.	Gan Y, Lu J, Yeung BZ, Cottage CT, Wientjes MG, Au JL-S. 2015. Pharmacodynamics of telomerase inhibition and telomere shortening by noncytotoxic suramin. AAPS J 17:268–276.
448 449 450 451	67. 68.	Gan Y, Lu J, Yeung BZ, Cottage CT, Wientjes MG, Au JL-S. 2015. Pharmacodynamics of telomerase inhibition and telomere shortening by noncytotoxic suramin. AAPS J 17:268–276. Villalona-Calero MA, Wientjes MG, Otterson GA, Kanter S, Young D, Murgo AJ,
448 449 450 451 452	67. 68.	 Gan Y, Lu J, Yeung BZ, Cottage CT, Wientjes MG, Au JL-S. 2015. Pharmacodynamics of telomerase inhibition and telomere shortening by noncytotoxic suramin. AAPS J 17:268–276. Villalona-Calero MA, Wientjes MG, Otterson GA, Kanter S, Young D, Murgo AJ, Fischer B, DeHoff C, Chen D, Yeh T-K, Song S, Grever M, Au JL-S. 2003. Phase I
 448 449 450 451 452 453 	67. 68.	 Gan Y, Lu J, Yeung BZ, Cottage CT, Wientjes MG, Au JL-S. 2015. Pharmacodynamics of telomerase inhibition and telomere shortening by noncytotoxic suramin. AAPS J 17:268–276. Villalona-Calero MA, Wientjes MG, Otterson GA, Kanter S, Young D, Murgo AJ, Fischer B, DeHoff C, Chen D, Yeh T-K, Song S, Grever M, Au JL-S. 2003. Phase I study of low-dose suramin as a chemosensitizer in patients with advanced non-
 448 449 450 451 452 453 454 	67. 68.	 Gan Y, Lu J, Yeung BZ, Cottage CT, Wientjes MG, Au JL-S. 2015. Pharmacodynamics of telomerase inhibition and telomere shortening by noncytotoxic suramin. AAPS J 17:268–276. Villalona-Calero MA, Wientjes MG, Otterson GA, Kanter S, Young D, Murgo AJ, Fischer B, DeHoff C, Chen D, Yeh T-K, Song S, Grever M, Au JL-S. 2003. Phase I study of low-dose suramin as a chemosensitizer in patients with advanced non- small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res 9:3303–3311.
 448 449 450 451 452 453 454 455 	67. 68. 69.	 Gan Y, Lu J, Yeung BZ, Cottage CT, Wientjes MG, Au JL-S. 2015. Pharmacodynamics of telomerase inhibition and telomere shortening by noncytotoxic suramin. AAPS J 17:268–276. Villalona-Calero MA, Wientjes MG, Otterson GA, Kanter S, Young D, Murgo AJ, Fischer B, DeHoff C, Chen D, Yeh T-K, Song S, Grever M, Au JL-S. 2003. Phase I study of low-dose suramin as a chemosensitizer in patients with advanced non- small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res 9:3303–3311. Villalona-Calero MA, Otterson GA, Wientjes MG, Weber F, Bekaii-Saab T, Young D,
 448 449 450 451 452 453 454 455 456 	67. 68. 69.	 Gan Y, Lu J, Yeung BZ, Cottage CT, Wientjes MG, Au JL-S. 2015. Pharmacodynamics of telomerase inhibition and telomere shortening by noncytotoxic suramin. AAPS J 17:268–276. Villalona-Calero MA, Wientjes MG, Otterson GA, Kanter S, Young D, Murgo AJ, Fischer B, DeHoff C, Chen D, Yeh T-K, Song S, Grever M, Au JL-S. 2003. Phase I study of low-dose suramin as a chemosensitizer in patients with advanced non- small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res 9:3303–3311. Villalona-Calero MA, Otterson GA, Wientjes MG, Weber F, Bekaii-Saab T, Young D, Murgo AJ, Jensen R, Yeh T-K, Wei Y, Zhang Y, Eng C, Grever M, Au JL-S. 2008.
 448 449 450 451 452 453 454 455 456 457 	67. 68. 69.	 Gan Y, Lu J, Yeung BZ, Cottage CT, Wientjes MG, Au JL-S. 2015. Pharmacodynamics of telomerase inhibition and telomere shortening by noncytotoxic suramin. AAPS J 17:268–276. Villalona-Calero MA, Wientjes MG, Otterson GA, Kanter S, Young D, Murgo AJ, Fischer B, DeHoff C, Chen D, Yeh T-K, Song S, Grever M, Au JL-S. 2003. Phase I study of low-dose suramin as a chemosensitizer in patients with advanced non- small cell lung cancer. Clin Cancer Res Off J Am Assoc Cancer Res 9:3303–3311. Villalona-Calero MA, Otterson GA, Wientjes MG, Weber F, Bekaii-Saab T, Young D, Murgo AJ, Jensen R, Yeh T-K, Wei Y, Zhang Y, Eng C, Grever M, Au JL-S. 2008. Noncytotoxic suramin as a chemosensitizer in patients with advanced non-small-cell

- 21 -

459	70.	Stocker K, Fischer H, Meier J. 1982. Thrombin-like snake venom proteinases.
460		Toxicon Off J Int Soc Toxinology 20:265–273.
461	71.	Monteiro RQ, Campana PT, Melo PA, Bianconi ML. 2004. Suramin interaction with
462		human alpha-thrombin: inhibitory effects and binding studies. Int J Biochem Cell Biol
463		36:2077–2085.
464	72.	Murakami MT, Arruda EZ, Melo PA, Martinez AB, Calil-Eliás S, Tomaz MA, Lomonte
465		B, Gutiérrez JM, Arni RK. 2005. Inhibition of myotoxic activity of Bothrops asper
466		myotoxin II by the anti-trypanosomal drug suramin. J Mol Biol 350:416–426.
467	73.	Aragão EA, Vieira DS, Chioato L, Ferreira TL, Lourenzoni MR, Silva SR, Ward RJ.
468		2012. Characterization of suramin binding sites on the human group IIA secreted
469		phospholipase A2 by site-directed mutagenesis and molecular dynamics simulation.
470		Arch Biochem Biophys 519:17–22.
471	74.	Salvador GHM, Dreyer TR, Cavalcante WLG, Matioli FF, Dos Santos JI, Velazquez-
472		Campoy A, Gallacci M, Fontes MRM. 2015. Structural and functional evidence for
473		membrane docking and disruption sites on phospholipase A2-like proteins revealed
474		by complexation with the inhibitor suramin. Acta Crystallogr D Biol Crystallogr
475		71:2066–2078.
476	75.	Salvador GHM, Dreyer TR, Gomes AAS, Cavalcante WLG, Dos Santos JI, Gandin
477		CA, de Oliveira Neto M, Gallacci M, Fontes MRM. 2018. Structural and functional
478		characterization of suramin-bound MjTX-I from Bothrops moojeni suggests a
479		particular myotoxic mechanism. Sci Rep 8:10317.

480	76.	Zhou X, Tan T-C, Valiyaveettil S, Go ML, Kini RM, Velazquez-Campoy A,
481		Sivaraman J. 2008. Structural characterization of myotoxic ecarpholin S from Echis
482	2	carinatus venom. Biophys J 95:3366–3380.
483	7 7.	El-Kik CZ, Fernandes FFA, Tomaz MA, Gaban GA, Fonseca TF, Calil-Elias S,
484	Ļ	Oliveira SDS, Silva CLM, Martinez AMB, Melo PA. 2013. Neutralization of Apis
485	5	mellifera bee venom activities by suramin. Toxicon Off J Int Soc Toxinology 67:55-
486	5	62.
407	70	Arruda EZ Silva NMV Marago D.a. M. Mala DA 2002 Effect of automin on
407	70.	Andda EZ, Silva Nivy, Moraes R a. M, Meio FA. 2002. Effect of Surahim off
488	5	myotoxicity of some crotalid snake venoms. Braz J Med Biol Res Rev Bras Pesqui
489)	Medicas E Biol 35:723–726.
490) 79	Fathi B. Amani F. Jami-al-ahmadi A. Zare A. 2010. Antagonistc effect of suramin
101		
491		against the venom of the Iranian snake Echis carinatus in mice. Iranian J vet Sci
492	2	Technol 2:19–15.
493	80.	The Lancet, Editorial. 2017. Snake-bite envenoming: a priority neglected tropical
494	Ļ	disease. Lancet Lond Engl 390:2.
-		3 • • • • • • • • • • 3 • • •
495	81.	Arnold C. 2016. Vipers, mambas and taipans: the escalating health crisis over
496	;	snakebites. Nature 537:26–28.
497	82.	den Hertog A, Nelemans A, Van den Akker J. 1989. The inhibitory action of suramin
498	3	on the P2-purinoceptor response in smooth muscle cells of guinea-pig taenia caeci.
499)	Eur J Pharmacol 166:531–534.

AAC

500

501

83.

Kuruppu S, Chaisakul J, Smith AI, Hodgson WC. 2014. Inhibition of presynaptic
neurotoxins in taipan venom by suramin. Neurotox Res 25:305–310.
Grishin S, Shakirzyanova A, Giniatullin A, Afzalov R, Giniatullin R. 2005.
Mechanisms of ATP action on motor nerve terminals at the frog neuromuscular
junction. Eur J Neurosci 21:1271–1279.
Ong WY, Motin LG, Hansen MA, Dias LS, Ayrout C, Bennett MR, Balcar VJ. 1997.
P2 purinoceptor blocker suramin antagonises NMDA receptors and protects against
excitatory behaviour caused by NMDA receptor agonist (RS)-(tetrazol-5-yl)-glycine
in rats. J Neurosci Res 49:627–638.
Kharlamov A, Jones SC, Kim DK. 2002. Suramin reduces infarct volume in a model
of focal brain ischemia in rats. Exp Brain Res 147:353–359.
Dupre TV, Doll MA, Shah PP, Sharp CN, Kiefer A, Scherzer MT, Saurabh K, Saforo
D, Siow D, Casson L, Arteel GE, Jenson AB, Megyesi J, Schnellmann RG, Beverly
LJ, Siskind LJ. 2016. Suramin protects from cisplatin-induced acute kidney injury.
Am J Physiol Renal Physiol 310:F248-258.
Doggrell SA. 2004. Suramin: potential in acute liver failure. Expert Opin Investig
Drugs 13:1361–1363.
Chi Y, Gao K, Zhang H, Takeda M, Yao J. 2014. Suppression of cell membrane
permeability by suramin: involvement of its inhibitory actions on connexin 43
hemichannels. Br J Pharmacol 171:3448-3462.
- 24 -

502	84.	Grishin S, Shakirzyanova A, Giniatullin A, Afzalov R, Giniatullin R. 2005.
503		Mechanisms of ATP action on motor nerve terminals at the frog neuromuscular
504		junction. Eur J Neurosci 21:1271–1279.
505	85.	Ong WY, Motin LG, Hansen MA, Dias LS, Ayrout C, Bennett MR, Balcar VJ. 1997.
506		P2 purinoceptor blocker suramin antagonises NMDA receptors and protects against
507		excitatory behaviour caused by NMDA receptor agonist (RS)-(tetrazol-5-yl)-glycine
508		in rats. J Neurosci Res 49:627–638.
509 510	86.	Kharlamov A, Jones SC, Kim DK. 2002. Suramin reduces infarct volume in a model of focal brain ischemia in rats. Exp Brain Res 147:353–359.
511	87.	Dupre TV, Doll MA, Shah PP, Sharp CN, Kiefer A, Scherzer MT, Saurabh K, Saforo
512		D, Siow D, Casson L, Arteel GE, Jenson AB, Megyesi J, Schnellmann RG, Beverly
513		LJ, Siskind LJ. 2016. Suramin protects from cisplatin-induced acute kidney injury.
514		Am J Physiol Renal Physiol 310:F248-258.
515 516	88.	Doggrell SA. 2004. Suramin: potential in acute liver failure. Expert Opin Investig Drugs 13:1361–1363.
517	89.	Chi Y, Gao K, Zhang H, Takeda M, Yao J. 2014. Suppression of cell membrane
518		permeability by suramin: involvement of its inhibitory actions on connexin 43
519		hemichannels. Br J Pharmacol 171:3448–3462.

AAC

Antimicrobial Agents and Chemotherapy

520	90.	Bourguignon T, Benoist L, Chadet S, Miquelestorena-Standley E, Fromont G,
521		Ivanes F, Angoulvant D. 2019. Stimulation of murine P2Y11-like purinoreceptor
522		protects against hypoxia/reoxygenation injury and decreases heart graft rejection
523		lesions. J Thorac Cardiovasc Surg 158:780–790.e1.
524	91.	Sahu D, Saroha A, Roy S, Das S, Srivastava PS, Das HR. 2012. Suramin
525		ameliorates collagen induced arthritis. Int Immunopharmacol 12:288–293.
526	92.	Zou CJ, Onaka TO, Yagi K. 1998. Effects of suramin on neuroendocrine and
527		behavioural responses to conditioned fear stimuli. Neuroreport 9:997–999.
528	93.	Denkinger M, Shive CL, Pantenburg B, Forsthuber TG. 2004. Suramin has adjuvant
529		properties and promotes expansion of antigen-specific Th1 and Th2 cells in vivo. Int
530		Immunopharmacol 4:15–24.
531	94.	Dunn PM, Blakeley AG. 1988. Suramin: a reversible P2-purinoceptor antagonist in
532		the mouse vas deferens. Br J Pharmacol 93:243–245.
533	95.	Bernardes CF, Fagian MM, Meyer-Fernandes JR, Castilho RF, Vercesi AE. 2001.
534		Suramin inhibits respiration and induces membrane permeability transition in
535		isolated rat liver mitochondria. Toxicology 169:17–23.
536	96.	Naviaux RK, Zolkipli Z, Wang L, Nakayama T, Naviaux JC, Le TP, Schuchbauer
537		MA, Rogac M, Tang Q, Dugan LL, Powell SB. 2013. Antipurinergic therapy corrects
538		the autism-like features in the poly(IC) mouse model. PloS One 8:e57380.

539	97.	Naviaux JC, Schuchbauer MA, Li K, Wang L, Risbrough VB, Powell SB, Naviaux
540		RK. 2014. Reversal of autism-like behaviors and metabolism in adult mice with
541		single-dose antipurinergic therapy. Transl Psychiatry 4:e400.
542	98.	Naviaux RK, Curtis B, Li K, Naviaux JC, Bright AT, Reiner GE, Westerfield M, Goh
543		S, Alaynick WA, Wang L, Capparelli EV, Adams C, Sun J, Jain S, He F, Arellano
544		DA, Mash LE, Chukoskie L, Lincoln A, Townsend J. 2017. Low-dose suramin in
545		autism spectrum disorder: a small, phase I/II, randomized clinical trial. Ann Clin
546		Transl Neurol 4:491–505.
_ /_		
547	99.	Town BW, Wills ED, Wilson EJ, Wormall A. 1950. Studies on suramin; the action of
548		the drug on enzymes and some other proteins. General considerations. Biochem J
549		47:149–158.
550	100	Willow M. College M. Kunte DA. Derić I. Opperdage ED. 1002. Suphasis and
550	100.	Willson M, Callens M, Runiz DA, Pene J, Opperdoes FR. 1993. Synthesis and
551		activity of inhibitors highly specific for the glycolytic enzymes from Trypanosoma
552		brucei. Mol Biochem Parasitol 59:201–210.
553	101	Morgan HP, McNae IW, Nowicki MW, Zhong W, Michels PAM, Auld DS, Eothergill-
555	101.	
554		Gilmore LA, Walkinshaw MD. 2011. The trypanocidal drug suramin and other trypan
555		blue mimetics are inhibitors of pyruvate kinases and bind to the adenosine site. J
556		Biol Chem 286:31232–31240.
557	102	Stopponi AO Brignono IA 1057 Inhibition of quasinia debudrogeneses by
557	102.	Suppani AO, Brighone JA. 1957. Infinibilion of succinic denydrogenase by
558		polysulfonated compounds. Arch Biochem Biophys 68:432–451.

559	103.	Ono K, Nakane H, Fukushima M. 1988. Differential inhibition of various
560		deoxyribonucleic and ribonucleic acid polymerases by suramin. Eur J Biochem
561		172:349–353.
562	104.	Jindal HK, Anderson CW, Davis RG, Vishwanatha JK. 1990. Suramin affects DNA
563		synthesis in HeLa cells by inhibition of DNA polymerases. Cancer Res 50:7754–
564		7757.
565	105.	Mastrangelo E, Pezzullo M, Tarantino D, Petazzi R, Germani F, Kramer D, Robel I,
566		Rohayem J, Bolognesi M, Milani M. 2012. Structure-based inhibition of Norovirus
567		RNA-dependent RNA polymerases. J Mol Biol 419:198–210.
568	106.	Waring MJ. 1965. The effects of antimicrobial agents on ribonucleic acid
569		polymerase. Mol Pharmacol 1:1–13.
570	107.	Basavannacharya C, Vasudevan SG. 2014. Suramin inhibits helicase activity of
570 571	107.	Basavannacharya C, Vasudevan SG. 2014. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format.
570 571 572	107.	Basavannacharya C, Vasudevan SG. 2014. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format. Biochem Biophys Res Commun 453:539–544.
570 571 572 573	107.	Basavannacharya C, Vasudevan SG. 2014. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format. Biochem Biophys Res Commun 453:539–544. Bojanowski K, Lelievre S, Markovits J, Couprie J, Jacquemin-Sablon A, Larsen AK.
570 571 572 573 574	107. 108.	 Basavannacharya C, Vasudevan SG. 2014. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format. Biochem Biophys Res Commun 453:539–544. Bojanowski K, Lelievre S, Markovits J, Couprie J, Jacquemin-Sablon A, Larsen AK. 1992. Suramin is an inhibitor of DNA topoisomerase II in vitro and in Chinese
570 571 572 573 574 575	107.	 Basavannacharya C, Vasudevan SG. 2014. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format. Biochem Biophys Res Commun 453:539–544. Bojanowski K, Lelievre S, Markovits J, Couprie J, Jacquemin-Sablon A, Larsen AK. 1992. Suramin is an inhibitor of DNA topoisomerase II in vitro and in Chinese hamster fibrosarcoma cells. Proc Natl Acad Sci U S A 89:3025–3029.
570 571 572 573 574 575 576	107. 108. 109.	 Basavannacharya C, Vasudevan SG. 2014. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format. Biochem Biophys Res Commun 453:539–544. Bojanowski K, Lelievre S, Markovits J, Couprie J, Jacquemin-Sablon A, Larsen AK. 1992. Suramin is an inhibitor of DNA topoisomerase II in vitro and in Chinese hamster fibrosarcoma cells. Proc Natl Acad Sci U S A 89:3025–3029. Ren C, Morohashi K, Plotnikov AN, Jakoncic J, Smith SG, Li J, Zeng L, Rodriguez
570 571 572 573 574 575 576 577	107. 108. 109.	 Basavannacharya C, Vasudevan SG. 2014. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format. Biochem Biophys Res Commun 453:539–544. Bojanowski K, Lelievre S, Markovits J, Couprie J, Jacquemin-Sablon A, Larsen AK. 1992. Suramin is an inhibitor of DNA topoisomerase II in vitro and in Chinese hamster fibrosarcoma cells. Proc Natl Acad Sci U S A 89:3025–3029. Ren C, Morohashi K, Plotnikov AN, Jakoncic J, Smith SG, Li J, Zeng L, Rodriguez Y, Stojanoff V, Walsh M, Zhou M-M. 2015. Small-molecule modulators of methyl-

- 27 -

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

111

112

113

114

115

of protein arginine methylation inhibitors. J Med Chem 53:6028–6039.
Trapp J, Meier R, Hongwiset D, Kassack MU, Sippl W, Jung M. 2007. Structure-
activity studies on suramin analogues as inhibitors of NAD+-dependent histone
deacetylases (sirtuins). ChemMedChem 2:1419–1431.
Schuetz A, Min J, Antoshenko T, Wang C-L, Allali-Hassani A, Dong A, Loppnau P,
Vedadi M, Bochkarev A, Sternglanz R, Plotnikov AN. 2007. Structural basis of
inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Struct
Lond Engl 1993 15:377–389.
Hosoi Y, Matsumoto Y, Tomita M, Enomoto A, Morita A, Sakai K, Umeda N, Zhao
H-J, Nakagawa K, Ono T, Suzuki N. 2002. Phosphorothioate oligonucleotides,
suramin and heparin inhibit DNA-dependent protein kinase activity. Br J Cancer
86:1143–1149.
Hensey CE, Boscoboinik D, Azzi A. 1989. Suramin, an anti-cancer drug, inhibits
protein kinase C and induces differentiation in neuroblastoma cell clone NB2A.
FEBS Lett 258:156–158.
El-Kik CZ, Fernandes FFA, Tomaz MA, Gaban GA, Fonseca TF, Calil-Elias S,
Oliveira SDS, Silva CLM, Martinez AMB, Melo PA. 2013. Neutralization of Apis
mellifera bee venom activities by suramin. Toxicon Off J Int Soc Toxinology 67:55-
62.

110. Feng Y, Li M, Wang B, Zheng YG. 2010. Discovery and mechanistic study of a class

iás S, Tomaz MA, Lomonte
ivity of Bothrops asper
Biol 350:416–426.
amin is an active site.
yrosine phosphatases. J
min." Nature 192:683.
errow IH Holzarabe II
T 2006 Aziridina 2.2
1. 2006. Azindine-2,5-
ase of Trypanosoma
tt 16:2753–2757.
, Bieth JG. 1997. Inhibition
272:9950–9955.
nent, biood clotting,
87.
, Gruetzner U, Schubert L,
nin inhibits death receptor-
mage in mice. Nat Med

599	116.	Murakami MT, Arruda EZ, Melo PA, Martinez AB, Calil-Eliás S, Tomaz MA, Lomonte
600		B, Gutiérrez JM, Arni RK. 2005. Inhibition of myotoxic activity of Bothrops asper
601		myotoxin II by the anti-trypanosomal drug suramin. J Mol Biol 350:416–426.
602	117.	Zhang YL, Keng YF, Zhao Y, Wu L, Zhang ZY. 1998. Suramin is an active site-
603		directed, reversible, and tight-binding inhibitor of protein-tyrosine phosphatases. J
604		Biol Chem 273:12281–12287.
605	118.	Lominski I, Gray S. 1961. Inhibition of lysozyme by "Suramin." Nature 192:683.
606	119.	Vicik R, Hoerr V, Glaser M, Schultheis M, Hansell E, McKerrow JH, Holzgrabe U,
607		Caffrey CR, Ponte-Sucre A, Moll H, Stich A, Schirmeister T. 2006. Aziridine-2,3-
608		dicarboxylate inhibitors targeting the major cysteine protease of Trypanosoma
609		brucei as lead trypanocidal agents. Bioorg Med Chem Lett 16:2753–2757.
610	120.	Cadène M, Duranton J, North A, Si-Tahar M, Chignard M, Bieth JG. 1997. Inhibition
611		of neutrophil serine proteinases by suramin. J Biol Chem 272:9950–9955.
612	121.	Eisen V, Loveday C. 1973. Effects of suramin on complement, blood clotting,
613		fibrinolysis and kinin formation. Br J Pharmacol 49:678–687.
614	122.	Eichhorst ST, Krueger A, Müerköster S, Fas SC, Golks A, Gruetzner U, Schubert L,
615		Opelz C, Bilzer M, Gerbes AL, Krammer PH. 2004. Suramin inhibits death receptor-
616		induced apoptosis in vitro and fulminant apoptotic liver damage in mice. Nat Med
617		10:602–609.

AAC

123.	Tayel A, Ebrahim MA, Ibrahim AS, El-Gayar AM, Al-Gayyar MM. 2014. Cytotoxic effects of suramin against HepG2 cells through activation of intrinsic apoptotic pathway. J BUON Off J Balk Union Oncol 19:1048–1054.
124.	Fortes PA, Ellory JC, Lew VL. 1973. Suramin: a potent ATPase inhibitor which acts on the inside surface of the sodium pump. Biochim Biophys Acta 318:262–272.
125.	Demenis MA, Furriel RPM, Leone FA. 2003. Characterization of an ectonucleoside triphosphate diphosphohydrolase 1 activity in alkaline phosphatase-depleted rat osseous plate membranes: possible functional involvement in the calcification process. Biochim Biophys Acta 1646:216–225.
126.	Magalhães L, de Oliveira AHC, de Souza Vasconcellos R, Mariotini-Moura C, de Cássia Firmino R, Fietto JLR, Cardoso CL. 2016. Label-free assay based on immobilized capillary enzyme reactor of Leishmania infantum nucleoside triphosphate diphosphohydrolase (LicNTPDase-2-ICER-LC/UV). J Chromatogr B Analyt Technol Biomed Life Sci 1008:98–107.
127.	Luo H, Wood K, Shi F-D, Gao F, Chang Y. 2018. Suramin is a novel competitive antagonist selective to $\alpha 1\beta 2\gamma 2$ GABAA over $\rho 1$ GABAC receptors. Neuropharmacology 141:148–157.
128.	Nakazawa K, Inoue K, Ito K, Koizumi S, Inoue K. 1995. Inhibition by suramin and reactive blue 2 of GABA and glutamate receptor channels in rat hippocampal neurons. Naunyn Schmiedebergs Arch Pharmacol 351:202–208.

638	129.	Chung W-C, Kermode JC. 2005. Suramin disrupts receptor-G protein coupling by
639		blocking association of G protein alpha and betagamma subunits. J Pharmacol Exp
640		Ther 313:191–198.
641	130.	EI-Ajouz S, Ray D, Allsopp RC, Evans RJ. 2012. Molecular basis of selective
642		antagonism of the P2X1 receptor for ATP by NF449 and suramin: contribution of
643		basic amino acids in the cysteine-rich loop. Br J Pharmacol 165:390–400.
644	131.	Stevis PE, Deecher DC, Lopez FJ, Frail DE. 1999. Pharmacological characterization
645		of soluble human FSH receptor extracellular domain: facilitated secretion by
C4C		economics with FOLL Endeering 40:452, 400
646		coexpression with FSH. Endocrine 10:153–160.
647	132.	La Rocca RV, Stein CA, Danesi R, Cooper MR, Uhrich M, Myers CE. 1991. A pilot
648		study of suramin in the treatment of metastatic renal cell carcinoma. Cancer
649		67:1509–1513.
650	133.	Fong JS, Good RA. 1972. Suramina potent reversible and competitive inhibitor of
651		complement systems. Clin Exp Immunol 10:127–138.
652	12/	Tsiftsoglou SA Sim PR 2004 Human complement factor Lidoos not require
052	134.	Tsinsogiou SA, Sim KB. 2004. Human complement factor rules not require
653		cofactors for cleavage of synthetic substrates. J Immunol Baltim Md 1950 173:367-
654		375.
655	125	Tsiftsonlou SA Willis AC Li P Chen X Mitchell DA Pao 7 Sim PR 2005 The
000	155.	TSINGUGIUU UA, WIIIIS AU, EIT, OHEH A, WIIUHEII DA, NAU Z, SIIII ND. 2005. THE
656		catalytically active serine protease domain of human complement factor I.
657		Biochemistry (Mosc) 44:6239–6249.

658

659		Charged bipolar suramin derivatives induce aggregation of the prion protein at the
660		cell surface and inhibit PrPSc replication. J Cell Sci 118:4959–4973.
661	137.	Shukla SJ, Sakamuru S, Huang R, Moeller TA, Shinn P, Vanleer D, Auld DS, Austin
662		CP, Xia M. 2011. Identification of clinically used drugs that activate pregnane X
663		receptors. Drug Metab Dispos Biol Fate Chem 39:151–159.
664	138.	Klinger M, Freissmuth M, Nickel P, Stäbler-Schwarzbart M, Kassack M, Suko J,
665		Hohenegger M. 1999. Suramin and suramin analogs activate skeletal muscle
666		ryanodine receptor via a calmodulin binding site. Mol Pharmacol 55:462–472.
667	139.	Fairlamb AH, Bowman IB. 1977. Trypanosoma brucei: suramin and other
668		trypanocidal compounds' effects on sn-glycerol-3-phosphate oxidase. Exp Parasitol
669		43:353–361.
670	140.	Dias DA, de Barros Penteado B, Dos Santos LD, Dos Santos PM, Arruda CCP,
671		Schetinger MRC, Leal DBR, Dos Santos Jaques JA. 2017. Characterization of
672		ectonucleoside triphosphate diphosphohydrolase (E-NTPDase; EC 3.6.1.5) activity
673		in mouse peritoneal cavity cells. Cell Biochem Funct 35:358–363.
674	141.	Oses JP, Cardoso CM, Germano RA, Kirst IB, Rücker B, Fürstenau CR, Wink MR,
675		Bonan CD, Battastini AMO, Sarkis JJF. 2004. Soluble NTPDase: An additional
676		system of nucleotide hydrolysis in rat blood serum. Life Sci 74:3275–3284.
677	142.	Vasconcellos RDS, Mariotini-Moura C, Gomes RS, Serafim TD, Firmino R de C,
678		Silva E Bastos M, Castro FF de, Oliveira CM de, Borges-Pereira L, de Souza ACA,
679		de Souza RF, Gómez GAT, Pinheiro A da C, Maciel TEF, Silva-Júnior A, Bressan

136. Nunziante M, Kehler C, Maas E, Kassack MU, Groschup M, Schätzl HM. 2005.

680

681		ecto-nucleoside triphosphate diphosphohydrolase-2 is an apyrase involved in
682		macrophage infection and expressed in infected dogs. PLoS Negl Trop Dis 8:e3309.
683	143.	Santos RF, Pôssa MAS, Bastos MS, Guedes PMM, Almeida MR, Demarco R,
684		Verjovski-Almeida S, Bahia MT, Fietto JLR. 2009. Influence of Ecto-nucleoside
685		triphosphate diphosphohydrolase activity on Trypanosoma cruzi infectivity and
686		virulence. PLoS Negl Trop Dis 3:e387.
687	144.	Iqbal J, Lévesque SA, Sévigny J, Müller CE. 2008. A highly sensitive CE-UV
688		method with dynamic coating of silica-fused capillaries for monitoring of nucleotide
689		pyrophosphatase/phosphodiesterase reactions. Electrophoresis 29:3685–3693.
690	145.	Andréola ML, Tharaud D, Litvak S, Tarrago-Litvak L. 1993. The ribonuclease H
691		activity of HIV-1 reverse transcriptase: further biochemical characterization and
692		search of inhibitors. Biochimie 75:127–134.
693	146.	Mukherjee S, Hanson AM, Shadrick WR, Ndjomou J, Sweeney NL, Hernandez JJ,
694		Bartczak D, Li K, Frankowski KJ, Heck JA, Arnold LA, Schoenen FJ, Frick DN.
695		2012. Identification and analysis of hepatitis C virus NS3 helicase inhibitors using
696		nucleic acid binding assays. Nucleic Acids Res 40:8607–8621.
697	147.	Marchand C, Lea WA, Jadhav A, Dexheimer TS, Austin CP, Inglese J, Pommier Y,
698		Simeonov A. 2009. Identification of phosphotyrosine mimetic inhibitors of human
699		tyrosyl-DNA phosphodiesterase I by a novel AlphaScreen high-throughput assay.
700		Mol Cancer Ther 8:240–248.

GC, Almeida MR, Baqui MMA, Afonso LCC, Fietto JLR. 2014. Leishmania infantum

- 33 -

701	148.	Kakuguchi W, Nomura T, Kitamura T, Otsuguro S, Matsushita K, Sakaitani M,
702		Maenaka K, Tei K. 2018. Suramin, screened from an approved drug library, inhibits
703		HuR functions and attenuates malignant phenotype of oral cancer cells. Cancer
704		Med 7:6269–6280.
705	149.	Paulson CN. John K. Baxley RM. Kurniawan F. Orellana K. Francis R. Sobeck A.
706		Eichman BE, Chazin W.I. Aihara H, Georg GI, Hawkinson JE, Bielinsky A-K, 2019
700		
707		The anti-parasitic agent suramin and several of its analogues are inhibitors of the
708		DNA binding protein Mcm10. Open Biol 9:190117.
709	150.	Horiuchi KY, Eason MM, Ferry JJ, Planck JL, Walsh CP, Smith RF, Howitz KT, Ma
710		H. 2013. Assay development for histone methyltransferases. Assay Drug Dev
711		Technol 11:227–236.
712	151.	Peinado RDS, Olivier DS, Eberle RJ, de Moraes FR, Amaral MS, Arni RK,
713		Coronado MA. 2019. Binding studies of a putative C. pseudotuberculosis target
714		protein from Vitamin B12 Metabolism. Sci Rep 9:6350.
715	152.	Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE,
716		Chung P, Kisielewski A, Zhang L-L, Scherer B, Sinclair DA. 2003. Small molecule
717		activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191-
718		196.
710	153	Trueblood KE Mohr S. Dubyak GR. 2011. Purineraic regulation of high-glucose-
713	100.	Hubbled NE, Wolf 6, Bubyak GN, 2011. Fullinergic regulation of high-glucose
720		induced caspase-1 activation in the rat retinal Müller cell line rMC-1. Am J Physiol
721		Cell Physiol 301:C1213-1223.

154.	Stark S, Schuller A, Sifringer M, Gerstner B, Brehmer F, Weber S, Altmann R, Obladen M, Buhrer C, Felderhoff-Mueser U. 2008. Suramin induces and enhances apoptosis in a model of hyperoxia-induced oligodendrocyte injury. Neurotox Res 13:197–207.
155.	Marques AF, Esser D, Rosenthal PJ, Kassack MU, Lima LMTR. 2013. Falcipain-2 inhibition by suramin and suramin analogues. Bioorg Med Chem 21:3667–3673.
156.	Beiler JM, Martin GJ. 1948. Inhibition of hyaluronidase action by derivatives of hesperidin. J Biol Chem 174:31–35.
157.	Constantopoulos G, Rees S, Cragg BG, Barranger JA, Brady RO. 1980. Experimental animal model for mucopolysaccharidosis: suramin-induced glycosaminoglycan and sphingolipid accumulation in the rat. Proc Natl Acad Sci U S A 77:3700–3704.
158.	Bachmann A, Russ U, Quast U. 1999. Potent inhibition of the CFTR chloride channel by suramin. Naunyn Schmiedebergs Arch Pharmacol 360:473–476.
159.	Peoples RW, Li C. 1998. Inhibition of NMDA-gated ion channels by the P2 purinoceptor antagonists suramin and reactive blue 2 in mouse hippocampal neurones. Br J Pharmacol 124:400–408.
160.	Sharma A, Yogavel M, Sharma A. 2016. Structural and functional attributes of malaria parasite diadenosine tetraphosphate hydrolase. Sci Rep 6:19981.

732 glycosaminoglycan and sphingoli 733 A 77:3700-3704. 734 158. Bachmann A, Russ U, Quast U. 735 channel by suramin. Naunyn Sch

722

723

724

725

726

727

728

729

730

731

- 159. Peoples RW, Li C. 1998. Inhibitio 736 737 purinoceptor antagonists suramin 738 neurones. Br J Pharmacol 124:40
- 739 Sharma A, Yogavel M, Sharma A 160. 740 malaria parasite diadenosine tetra

741

742		sites on the group IIA human secreted phospholipase A2. Bioorganic Chem 37:41-
743		45.
744	162.	Quemé-Peña M, Juhász T, Mihály J, Cs Szigyártó I, Horváti K, Bősze S, Henczkó J,
745		Pályi B, Németh C, Varga Z, Zsila F, Beke-Somfai T. 2019. Manipulating Active
746		Structure and Function of Cationic Antimicrobial Peptide CM15 with the
747		Polysulfonated Drug Suramin: A Step Closer to in Vivo Complexity. Chembiochem
748		Eur J Chem Biol.
749	163.	Abdeen S, Salim N, Mammadova N, Summers CM, Goldsmith-Pestana K,
750		McMahon-Pratt D, Schultz PG, Horwich AL, Chapman E, Johnson SM. 2016.
751		Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy
752		for treating African sleeping sickness. Bioorg Med Chem Lett 26:5247–5253.
753	164.	Stevens M, Abdeen S, Salim N, Ray A-M, Washburn A, Chitre S, Sivinski J, Park Y,
754		Hoang QQ, Chapman E, Johnson SM. 2019. HSP60/10 chaperonin systems are
755		inhibited by a variety of approved drugs, natural products, and known bioactive
756		molecules. Bioorg Med Chem Lett 29:1106–1112.
757	165.	Wierenga RK, Swinkels B, Michels PA, Osinga K, Misset O, Van Beeumen J,
758		Gibson WC, Postma JP, Borst P, Opperdoes FR. 1987. Common elements on the
759		surface of glycolytic enzymes from Trypanosoma brucei may serve as topogenic
760		signals for import into glycosomes. EMBO J 6:215–221.

161. Vieira DS, Aragão EA, Lourenzoni MR, Ward RJ. 2009. Mapping of suramin binding

761

779

616.

762		bloodstream forms of Trypanosoma brucei and its effect on respiration and growth
763		rate in vivo. Mol Biochem Parasitol 1:315–333.
764	167.	Opperdoes FR, Borst P. 1977. Localization of nine glycolytic enzymes in a
765		microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett 80:360-
766		364.
767	168.	Wang CC. 1995. Molecular mechanisms and therapeutic approaches to the
768		treatment of African trypanosomiasis. Annu Rev Pharmacol Toxicol 35:93–127.
769	169.	Fairlamb A. 1975. A study of glycerophosphate oxidase in Trypanosoma brucei.
770		Ph.D. Thesis, University of Edinburgh.
771	170.	Morty RE, Troeberg L, Pike RN, Jones R, Nickel P, Lonsdale-Eccles JD, Coetzer
772		TH. 1998. A trypanosome oligopeptidase as a target for the trypanocidal agents
773		pentamidine, diminazene and suramin. FEBS Lett 433:251-256.
774	171.	Zimmermann S, Hall L, Riley S, Sørensen J, Amaro RE, Schnaufer A. 2016. A novel
775		high-throughput activity assay for the Trypanosoma brucei editosome enzyme REL1
776		and other RNA ligases. Nucleic Acids Res 44:e24.
777	172.	Roveri OA, Franke de Cazzulo BM, Cazzulo JJ. 1982. Inhibition by suramin of
778		oxidative phosphorylation in Crithidia fasciculata. Comp Biochem Physiol B 71:611-

- 37 -

166. Fairlamb AH, Bowman IB. 1980. Uptake of the trypanocidal drug suramin by

780	173.	Thomas JA, Baker N, Hutchinson S, Dominicus C, Trenaman A, Glover L, Alsford S,
781		Horn D. 2018. Insights into antitrypanosomal drug mode-of-action from cytology-
782		based profiling. PLoS Negl Trop Dis 12:e0006980.
783	174.	Gagliardi AR, Taylor MF, Collins DC. 1998. Uptake of suramin by human
784		microvascular endothelial cells. Cancer Lett 125:97–102.
785	175.	Baghdiguian S, Boudier JL, Boudier JA, Fantini J. 1996. Intracellular localisation of
786		suramin, an anticancer drug, in human colon adenocarcinoma cells: a study by
787		quantitative autoradiography. Eur J Cancer Oxf Engl 1990 32A:525–532.
788	176.	Vansterkenburg EL, Coppens I, Wilting J, Bos OJ, Fischer MJ, Janssen LH,
789		Opperdoes FR. 1993. The uptake of the trypanocidal drug suramin in combination
790		with low-density lipoproteins by Trypanosoma brucei and its possible mode of
791		action. Acta Trop 54:237–250.
792	177.	Sanderson L, Khan A, Thomas S. 2007. Distribution of suramin, an
793		antitrypanosomal drug, across the blood-brain and blood-cerebrospinal fluid
794		interfaces in wild-type and P-glycoprotein transporter-deficient mice. Antimicrob
795		Agents Chemother 51:3136–3146.
796	178.	Baghdiguian S, Boudier JL, Boudier JA, Fantini J. 1996. Intracellular localisation of
797		suramin, an anticancer drug, in human colon adenocarcinoma cells: a study by
798		quantitative autoradiography. Eur J Cancer Oxf Engl 1990 32A:525–532.
799	179.	Coppens I, Opperdoes FR, Courtoy PJ, Baudhuin P. 1987. Receptor-mediated
800		endocytosis in the bloodstream form of Trypanosoma brucei. J Protozool 34:465-
801		473.

- 38 -

AAC

802	180.	Pal A, Hall BS, Field MC. 2002. Evidence for a non-LDL-mediated entry route for the
803		trypanocidal drug suramin in Trypanosoma brucei. Mol Biochem Parasitol 122:217-
804		221.
005	404	Alafand O. Eskart O. Dahan M. Olavan I. Osnak az Elanas A. Lavan KE. Turnas D.I.
805	181.	Alsford S, Eckert S, Baker N, Glover L, Sanchez-Flores A, Leung KF, Turner DJ,
806		Field MC, Berriman M, Horn D. 2012. High-throughput decoding of antitrypanosomal
807		drug efficacy and resistance. Nature 482:232–236.
808	182.	Zoltner M, Leung KF, Alsford S, Horn D, Field MC. 2015. Modulation of the Surface
809		Proteome through Multiple Ubiquitylation Pathways in African Trypanosomes. PLoS
810		Pathog 11:e1005236.
811	183	Prigozhina NI, Heisel A I, Seldeen, IR, Cosford NDP, Price, IH, 2013, Amphinhilic
011	100.	
812		suramin dissolves Matrigel, causing an "inhibition" artefact within in vitro
813		angiogenesis assays. Int J Exp Pathol 94:412–417.
814	184.	Vansterkenburg EL, Wilting J, Janssen LH. 1989. Influence of pH on the binding of
815		suramin to human serum albumin. Biochem Pharmacol 38:3029–3035.
816	185.	Lozano RM, Jiménez M, Santoro J, Rico M, Giménez-Gallego G. 1998. Solution
817		structure of acidic fibroblast growth factor bound to 1.3. 6-naphthalenetrisulfonate: a
818		minimal model for the anti-tumoral action of suramins and suradistas. I Mol Biol
010		
819		281:899–915.
820	186.	Huang H-W, Mohan SK, Yu C. 2010. The NMR solution structure of human
821		epidermal growth factor (hEGF) at physiological pH and its interactions with
822		suramin. Biochem Biophys Res Commun 402:705–710.

- 39 -

824		M, Monteiro RQ, Verli H, Polikarpov I. 2009. Structural and thermodynamic analysis
825		of thrombin:suramin interaction in solution and crystal phases. Biochim Biophys
826		Acta 1794:873–881.
827	188.	Jiao L, Ouyang S, Liang M, Niu F, Shaw N, Wu W, Ding W, Jin C, Peng Y, Zhu Y,
828		Zhang F, Wang T, Li C, Zuo X, Luan C-H, Li D, Liu Z-J. 2013. Structure of severe
829		fever with thrombocytopenia syndrome virus nucleocapsid protein in complex with
830		suramin reveals therapeutic potential. J Virol 87:6829-6839.

187. Lima LMTR, Becker CF, Giesel GM, Marques AF, Cargnelutti MT, de Oliveira Neto

831

823

832

Antimicrobial Agents and Chemotherapy

833 TABLES

834

835 **Table 1.** Diseases and pathogens susceptible to suramin.

836

Disease, pathogen	Activity in cell culture	Activity in animal model	Activity in patient
Parasitic infections			
T. b. rhodesiense HAT	Х	Х	Х
T. b. gambiense HAT	Х	Х	Х
Surra, T. evansi	Х	х	n.a.
River blindness, O. volvulus	Х	Х	Х
Trypanosoma cruzi	Х		
Leishmania spp.	Х		
Plasmodium falciparum	Х		
Viral infections			
Hepatitis	Х	х	х
AIDS, HIV	Х		х
Herpes simplex	Х	х	
Chikungunya	Х	х	
Enterovirus 71	Х	Х	
Dengue	Х		
Zika	Х		
Ebola	Х		
Neoplastic diseases			
Non-small cell lung cancer	Х	х	
Breast cancer	Х	х	
Bladder cancer	Х	Х	
Brain tumors	Х	Х	
Prostate cancer	Х	Х	Х
Other uses			
Snake bite	Х	Х	
Arthritis	Х	Х	
Autism	n.a.	Х	х

837

AAC

840 ClinicalTrials.gov; others are from the literature.

841

Registry ID	Disease	Phase	Year
NCT02508259	Autism spectrum disorders	I, II	2015
NCT01671332	Non-small cell lung cancer	II	2012
NCT01038752	Non-small cell lung cancer	II	2010
NCT00083109	Recurrent renal cell carcinoma	I, II	2004
NCT00066768	Recurrent non-small cell lung cancer	Ι	2003
NCT00054028	Recurrent breast cancer	I, II	2002
NCT00006929	Recurrent non-small cell lung cancer	II	2000
NCT00006476	Bladder cancer	Ι	2000
NCT00004073	Brain and central nervous system tumors	II	1999
NCT00002921	Adrenocortical carcinoma	II	1997
NCT00003038	Advanced solid tumors	Ι	1997
NCT00002723	Prostate cancer	III	1996
NCT00002881	Prostate cancer	III	1996
NCT00002652	Multiple myeloma and plasma cell neoplasm	II	1995
NCT00002639	Brain and central nervous system tumors	II	1995
NCT00001381	Bladder neoplasms, transitional cell carcinoma	Ι	1994
NCT00001266	Prostatic neoplasm	II	1990
NCT00001230	Filariasis	observ.	1988
(16)	Solid tumors	observ.	1987
(17)	AIDS	observ.	1987
(18)	Hepatitis B	observ.	1987

842

843

844 Table 3. Putative target proteins of suramin, biological processes and mechanisms. Suramin acts as

an inhibitor or antagonist in all cases except for the pregnane X receptor and the ryanodine receptor.

846 The mode of action against caspase is controversial.

847

Accepted Manuscript Posted Online

Putative target	Reference	
Metabolism		
6-Phosphofructokinase	(100)	
Fructose-1,6-bisphosphate aldolase	(100)	
Glucose-6-phosphate isomerase	(100)	
Glyceraldehyde-3-phosphate dehydrogenase	(100)	
Glycerol-3-phosphate dehydrogenase	(100, 139)	
Glycerol kinase	(100)	
Hexokinase	(100)	
Phosphoglycerate kinase	(100)	
Pyruvate kinase	(101)	
Triose-phosphate isomerase	(100)	
Succinic dehydrogenase	(102)	
Galactokinase	493189 [*]	
Glutaminase	624170^{*}	
Glycerophosphate oxidase	(139)	
Nucleoside triphosphate diphosphohydrolase 1 & 2	(125, 126, 140–143)	
Nucleotide pyrophosphatase/phosphodiesterase 1 & 3	(144)	
Nucleic acids		
DNA polymerase alpha	(103, 104)	
DNA polymerase beta	(103, 104)	
DNA polymerase gamma	(103)	
DNA polymerase delta	(104)	
DNA polymerase I	(103, 104)	
Terminal deoxynucleotidyltransferase	(103)	
DNA primase	(103)	
DNA dependent RNA polymerase	(103, 106)	
RNA dependent RNA polymerase	(105)	
Reverse transcriptase	(21, 103)	
Telomerase	(67)	
RNAse H	(145)	
Flavivirus RNA helicase	(40, 107, 146)	
DNA Topoisomerase II	(108)	
Tyrosyl-DNA phosphodiesterase 1	(147)	
Human antigen R	(148)	
DNA-binding protein MCM10	(149)	
Epigenetics	4000 zo *	
Chromobox protein homologue 1 beta	488953	
Chromobox protein homologue 7	(109)	
Histone methyltransferases	(110, 150)	
Precorrin-4 C(11)-methyltransferase	(151)	
Sirtuin 1, 2, 5	(111, 112, 152)	

AAC

Antimicrobial Agents and Chemotherapy

Protease	
Kallikrein	(121)
Alpha Thrombin	(71)
Human neutrohphil cathepsing G	(120)
Human neutrophil elastase	(120)
Human neutrophil proteinase 3	(120)
Rhodesain	(119)
Caspases 1, 2, 8, 9, 10	(122, 123, 153, 1
Falcipain-2	(155)
Extracellular matrix	
Hyaluronidase	(156, 157)
Iduronate sulfatase	(157)
β-glucuronidase	(157)
Membrane channels and signaling	
Non-junctional connexin 43 hemichannels	(89)
Na ⁺ , K ⁺ -ATPase	(124)
Cystic fibrosis transmembrane regulator	(158)
Ryanodine receptor 1	(138)
GABA _A receptors	(127, 128)
P2X Purinergic receptors	(94)
P2Y Purinergic receptors	(94)
N-methyl-D-aspartate receptor	(159)
DNA-dependent protein kinase	(113)
Protein kinase C	(114)
Protein tyrosine phosphatases	(117)
VIP receptor	(129)
Follicle-stimulating hormone receptor	(131)
Pregnane X receptor	(137)
Diadenosine tetraphosphate hydrolase	(160)
Other	
Prion (Prp ^C)	(136)
Complement factors	(121, 133–135)
Phospholipase A ₂	(116, 161)
Lysozyme	(118)
Antimicrobial Peptide CM15	(162)
Ubiquitin carboxyl-terminal hydrolases 1 & 2	$504865; 463106^*$
HSP 60 chaperonin system	(163, 164)
GroEL chaperonin system	(163, 164)

Downloaded from http://aac.asm.org/ on March 20, 2020 at Brought to you by the University of Dundee Library & Learning Centre

849

850 Table 4. Solved structures of suramin complexed to target proteins.

851

PDB id	Protein	Reference
6CE2	Myotoxin I from Bothrops moojeni	(75)
4YV5	Myotoxin II from Bothrops moojeni	(74)
1Y4L	Myotoxin II from Bothrops asper	(116)
3BJW	Ecarpholin S from Echis carinatus	(76)
1RML	Acid fibroblast growth factor	(185)
n.a.	Human epidermal growth factor (hEGF)	(186)
4X3U	CBX7 chromodomain	(109)
3BF6, 2H9T	Human thrombin	(187)
2NYR	Human sirtuin homolog 5	(112)
3PP7	Leishmania mexicana pyruvate kinase	(101)
3GAN	Arabidopsis thaliana At3g22680	n.a.
3UR0	Murine norovirus RNA-dependent RNA polymerase	(105)
4J4V	Pentameric bunyavirus nucleocapsid protein	(188)
4J4R	Hexameric bunyavirus nucleocapsid protein	(188)

852

Antimicrobial Agents and Chemotherapy

854 FIGURE LEGENDS

855

Figure 1. Suramin structure and medicinal chemistry parameters. Except for its good solubility in
water, suramin lacks lead-like properties as defined e.g. by Lipinsky's rule of 5.

858

859	Figure 2. Publications on suramin in PubMed. Cumulative numbers are shown for papers on
860	suramin and trypanosomes or trypanosomiasis (black, search term "trypanosom*"), cancer (red,
861	"cancer OR tumor"), viruses (yellow, "virus OR viral OR hiv OR aids"), and toxins (green, "toxin
862	OR venom"). Other papers on suramin are shown in beige. There is no saturation yet. And it is
863	surprising that only a minority of the publications on suramin actually deal with trypanosomes.

Antimicrobial Agents and Chemotherapy

Molecular weight	1297 Da
H-bond donors	12
H-bond acceptors	23
logP	0.00023
Protein binding	99.7%
Metabolites	none
Biological half-life	44-54 days
Metabolites	none
Elimination pathway	urinary

