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Abstract 17 

Suramin is a hundred years old and still being used to treat the first stage of acute human sleeping 18 

sickness, caused by Trypanosoma brucei rhodesiense. Suramin is a multifunctional molecule with a 19 

wide array of potential applications, from parasitic and viral diseases to cancer, snakebite and 20 

autism. Suramin is also an enigmatic molecule: What are its targets? And how does it get into cells 21 

in the first place? Here we provide an overview on the many different candidate targets of suramin, 22 

discuss modes of action, and routes of cellular uptake. We reason that once the polypharmacology 23 

of suramin is understood at the molecular level, new, more specific, and less toxic molecules can be 24 

identified for the numerous potential applications of suramin.  25 
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Suramin, the fruit of early medicinal chemistry 26 

When suramin was introduced for the treatment of African sleeping sickness in 1922, it was one of 27 

the first anti-infective agents that had been developed in a medicinal chemistry program. Starting 28 

from the antitrypanosomal activity of the dye trypan blue, synthesized in 1904 by Paul Ehrlich, 29 

Bayer made a series of colorless and more potent derivatives. Molecule 205 was suramin (Figure 1), 30 

synthesized by Oskar Dressel, Richard Kothe and Bernhard Heymann in 1916. Sleeping sickness 31 

(also known as human African trypanosomiasis, HAT) was at the forefront of research at that time, 32 

not a neglected disease as it is today, and the development of suramin was a breakthrough for the 33 

emerging field of chemotherapy. While the history of suramin has been reviewed elsewhere (1), we 34 

focus here on the many potential applications of suramin and its enigmatic mode of action. 35 

 36 

Suramin as an antiparasitic drug 37 

Suramin is still being used for the treatment of Trypanosoma brucei rhodesiense infections (2). 38 

However, it does not cross the blood-brain barrier and therefore is administered only for the first, 39 

hemolymphatic stage of sleeping sickness, when the trypanosomes have not yet invaded the 40 

patient's CNS. The standard treatment regimen for suramin is an initial test dose of 4-5 mg/kg 41 

followed by five weekly doses of 20 mg/kg (but not more than 1 g) injected i.v. (3). Suramin is also 42 

used for Surra (mal de caderas), caused by T. evansi, in particular for the treatment of camels (4). 43 

The treatment regimen is a single injection i.v. of 10 mg/kg suramin, i.e. about 6-10 g (4). In vitro, 44 

suramin also has some activity against T. cruzi (5). However, it is not used for Chagas' disease, and 45 

studies in mice even suggested that suramin would exacerbate the disease (6). In vitro activity of 46 

suramin against Leishmania major and L. donovani has recently been described (7). Furthermore, 47 

suramin blocks host cell invasion by the malaria parasite Plasmodium falciparum. This was 48 

observed for both the invasion of erythrocytes by P. falciparum merozoites (8) and the invasion of 49 

HepG2 hepatoma cells by P. falciparum sporozoites (9). 50 

 on M
arch 20, 2020 at B

rought to you by the U
niversity of D

undee Library &
 Learning C

entre
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org/


- 3 - 
 

 Suramin had been in use for river blindness, caused by the filarial parasite Onchocerca 51 

volvulus (10). It acts on both microfilariae and, to a larger extent, on adult worms (11, 12). 52 

However, suramin was subsequently replaced by the less toxic, and orally bioavailable, ivermectin 53 

(13, 14). The adverse effects of suramin are indeed manifold, including nephrotoxicity, 54 

hypersensitivity reactions, dermatitis, anemia, peripheral neuropathy and bone marrow toxicity (3, 55 

15). But despite its potential toxicity, the lack of bioavailability, and absence of lead-like properties 56 

(Figure 1), suramin has found a surprising variety of repurposing applications. Table 1 provides an 57 

overview on the biological activities of suramin and Table 2 lists clinical trials performed with 58 

suramin. 59 

 60 

Suramin as an antiviral agent 61 

The antiviral and antibacteriophage activities of suramin are known since the mid-20th century (19, 62 

20). Soon after the discovery of retroviruses, suramin was found to inhibit retroviral reverse 63 

transcriptase (21), which served as a rationale to test suramin against human immunodeficiency 64 

virus (HIV). Suramin protected T-cells from HIV infection in vitro (22), and in AIDS patients it 65 

reduced the viral burden in some of the study subjects; however, no improvement of the 66 

immunological features and clinical symptoms was achieved (17, 23, 24). Later-on suramin was 67 

found to inhibit host cell attachment through binding to the HIV-1 envelope glycoprotein gp120, 68 

indicating that the in vitro protection against HIV infection is mediated through inhibition of viral 69 

entry (25). 70 

 Suramin also inhibits the binding of Dengue virus to host cells through a direct effect on the 71 

viral envelope protein (26). Inhibition of host cell attachment was also found for Herpes 72 

simplex (27) and Hepatitis C viruses (28), which explained the previously reported protective 73 

effects of suramin against in vitro herpes simplex infections (29) and in vivo infections of ducks 74 

with Duck Hepatitis B Virus (30). Similar to the experience with HIV, suramin had initially been 75 
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tested against Hepatitis viruses due to its inhibitory effect on the viral DNA polymerase (31, 32). 76 

But in a small clinical trial suramin was found to be ineffective and toxic in chronic active Hepatitis 77 

B patients (18). Suramin neutralized enterovirus 71 (EV71) in cell culture and in a mouse model by 78 

binding to capsid proteins  (33–35). 79 

 Suramin also bears potential against emerging viruses. It was shown to inhibit both RNA 80 

synthesis and replication in Chikungunya virus (36). In vitro suramin conferred protection if present 81 

at the time of infection, and this was attributed to a reduction of viral host cell binding and 82 

uptake (37). In the murine model suramin led to a reduction of pathognomonic lesions if injected 83 

prior to Chikungunya infection (38). Suramin also inhibited host cell invasion by Ebola virus (39) 84 

and Zika virus, even when added after viral exposure of the cell cultures (40). 85 

 86 

Suramin against cancer 87 

The first studies on the effects of suramin on neoplasms in animals were carried out in the 1940's; 88 

mice engrafted with lymphosarcoma developed significantly smaller tumors when simultaneously 89 

treated with suramin (41). In the 1970's it was shown that suramin can enhance the action of 90 

cyclophosphamide and adriamycin in mice engrafted with Ehrlich carcinoma (42). A first clinical 91 

trial with suramin was carried out in the 1980's in advanced-stage adrenal and renal cancer 92 

patients (16). Around half of the patients showed either partial or minimal responses, none showed 93 

complete remission. Nevertheless, a number of subsequent clinical trials with suramin were carried 94 

out (Table 2). In particular, suramin was tested against prostate cancer (43–51), non-small cell lung 95 

cancer (52), breast cancer (52), bladder cancer (53, 54) and brain tumors (55, 56). Most of these 96 

studies were based on the potential of suramin to act as an antagonist of growth factors (57–59), 97 

which are often overexpressed by tumors. In addition, suramin directly exhibits cytostatic activity 98 

on cultured tumor cells (60–62). However, the initial clinical tests did not warrant the further 99 

development of suramin as an anticancer monotherapy. 100 

 on M
arch 20, 2020 at B

rought to you by the U
niversity of D

undee Library &
 Learning C

entre
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org/


- 5 - 
 

 Subsequent tests focused on suramin as a chemosensitizer, based on the findings that at sub-101 

cytotoxic levels (<50 µM), it enhanced the efficacy of anticancer drugs such as mitomycin C, taxol 102 

or doxorubicin in ex vivo cultures and in animal models (63–65). Suramin combined with taxol 103 

inhibited invasiveness and prevented metastasis in a xenograft mouse model (66). Different 104 

explanations are conceivable for the chemosensitizing effects of suramin on tumor cells, including 105 

inhibition of telomerase (67) or inhibition of fibroblast growth factors and angiogenesis (68). A 106 

phase II clinical study was performed in patients with advanced, drug-resistant, non-small cell lung 107 

cancer treated with taxol or carboplatin; supplementation with nontoxic doses of suramin did not 108 

overcome drug resistance (69). Randomized controlled studies to validate the use of suramin as a 109 

chemosensitizer in chemotherapy-naive lung cancer patients remain to be performed. A 110 

combination of estramustine, docetaxel and suramin gave promising results in hormone-refractory 111 

prostate cancer patients (51). 112 

 113 

Suramin as an antidote 114 

Three of the many biological activities of suramin support a potential use as a protective agent: the 115 

inhibition of thrombin, the inhibition of phospholipase A2, and the inhibition of purinergic 116 

signaling. Several vipers possess toxins that mimic thrombin (70), perfidiously triggering the 117 

coagulation cascade in the mammalian blood. Suramin not only inhibits thrombin itself (71) but 118 

also the thrombin-like proteases of snake venom (72), and was therefore proposed as an antidote for 119 

snakebite. Other common constituents of metazoan venoms are phospholipases A2 that convert 120 

phospholipids into lysophospholipids. Again, suramin inhibits mammalian phospholipase A2 (73) 121 

as well as the orthologs from snake venom (74–76) and bee venom (77), suggesting that it can act 122 

as an antidote. A certain degree of protection from venoms by suramin was confirmed in mouse 123 

models (77–79). The potential use of suramin as an antidote is attractive given the high global 124 

burden of snakebites (80) and the current shortage of antivenom (81). 125 
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 Suramin's ability to block P2 purinergic, G protein-coupled receptors (82) may counteract 126 

the action of neurotoxins that trigger arachidonic acid signaling, e.g. via phospholipase A2 127 

activity (83). A possible explanation is that suramin prevents the activation of ATP receptors at the 128 

motor nerve ending, which otherwise would depress Ca2+ currents and reduce acetylcholine release 129 

at the presynaptic membrane (84). Suramin was also proposed to serve as a neuroprotective 130 

agent (85, 86), as an antidote for kidney toxicity during cancer chemotherapy (87) and, based on its 131 

antiapoptotic effect, to protect from liver failure (88). Suramin also inhibits connexin channels of 132 

the tight junction, thereby suppressing ATP release and protecting cells from pore-forming bacterial 133 

toxins such as hemolysin (89). The suramin analogs NF340 and NF546 were cardioprotective in a 134 

mouse model for heart graft rejection, presumably via inhibition of the purinergic G protein-coupled 135 

receptor P2Y11 (90). 136 

  137 

Further potential uses of suramin 138 

Suramin was found to have beneficial effects in a rat arthritis model (91) and to suppress fear 139 

responses in the rat (92). It also promoted the expansion of T cells during immunization of mice and 140 

was therefore considered as a small molecule adjuvant for vaccination (93). Based on the cell 141 

danger hypothesis, suramin has recently been tested for the treatment of autism spectrum disorders 142 

(ASD). The cell danger hypothesis suggests that a systemic stress response, which involves 143 

mitochondria and purinergic signaling, contributes to the development of psychopathologies like 144 

autism. Suramin had been shown to act as an inhibitor of purinergic signaling (94) and 145 

mitochondrial function (95), and was therefore proposed as a potential therapy for ASD (96). First 146 

tests in mouse models showed correction of symptoms in juveniles (96) as well as in adults (97). A 147 

first small human trial was carried out and, even though difficult to quantify, showed improvement 148 

of ASD symptoms (98). 149 

 150 
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(Too) many targets 151 

Suramin is a large molecule that carries six negative charges at physiological pH (Figure 1). It is 152 

likely to bind to, and thereby inhibit, various proteins (99). Thus the many and diverse potential 153 

applications of suramin reflect the polypharmacology of suramin. Indeed, a large number of 154 

enzymes have been shown to be inhibited by suramin (Table 3). Suramin inhibits many glycolytic 155 

enzymes (100, 101), enzymes involved in galactose catabolism (PubChem BioAssay: 493189) and 156 

enzymes of the Krebs cycle (102). Suramin further decreases the activity of a large number of 157 

enzymes involved in DNA and RNA synthesis and modification: DNA polymerases (103, 104), 158 

RNA polymerases (103, 105, 106), reverse transcriptase (21, 103), telomerase (67), and enzymes 159 

involved in winding/unwinding of DNA (107, 108) are inhibited by suramin, as well as histone- and 160 

chromatin modifying enzymes like chromobox proteins (109), methyltransferases (110) and sirtuin 161 

histone deacetylases (111). Suramin is also an inhibitor of other sirtuins (112) and protein kinases 162 

(113, 114), glutaminase (PubChem BioAssay: 624170), phospholipase A2 (115, 116), protein 163 

tyrosine phosphatases (117), lysozyme (118) and different serine- and cysteine-proteases (119–164 

121). For caspases, cysteine proteases involved in apoptosis, suramin was described to act as either 165 

inhibitor or activator (122, 123). Suramin further inhibits the Na+,K+-ATPase and other ATPases 166 

(124–126), certain classes of GABA receptors (127, 128), and several G protein-coupled 167 

receptors (129) including P2 purinoceptors and follicle-stimulating hormone receptor (130, 131). 168 

Suramin also showed inhibitory effects against components of the coagulation cascade (71, 132) 169 

and the complement system (133–135), and against deubiquitinating enzymes (PubChem BioAssay: 170 

504865; 463106). It also interacts with prion protein, inhibiting the conversion into the pathogenic 171 

form PrP
Sc 

(136). Beside the many inhibitory activities, suramin also activates certain nuclear 172 

receptors that act as transcription factors (137), and intracellular calcium channels (138). 173 

 174 

 175 
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Enigmatic mechanisms of action against African trypanosomes  176 

Somewhat ironically, much less appears to be known about the targets of suramin in African 177 

trypanosomes, where it has been in use for a century, than in tumor cells or viruses. Suramin was 178 

shown to inhibit glycolytic enzymes of T. brucei with selectivity over their mammalian orthologues, 179 

in particular hexokinase, aldolase, phosphoglycerate kinase and glycerol-3-phosphate 180 

dehydrogenase (100). Intriguingly, the trypanosomal enzymes have higher isoelectric points (>9), 181 

which is due to extra arginines and lysines that are absent in the mammalian orthologues (165). 182 

These residues form positively charged, surface exposed 'hot spots' that were proposed to be bound 183 

by the negatively charged suramin (100). Inhibition of trypanosomal glycolysis by suramin is in 184 

agreement with the dose-dependent inhibition of oxygen consumption and ATP production 185 

observed in trypanosomes isolated from suramin-treated rats (166). However, the glycolytic 186 

enzymes of T. brucei are localized inside glycosomes (167), and it is unclear how suramin could 187 

penetrate the glycosomal membrane, or if suramin could bind to glycolytic enzymes in the cytosol, 188 

before they are imported into the glycosomes (168). Alternative targets proposed for the 189 

trypanocidal effect of suramin are glycerophosphate oxidase (139, 169), a serine oligopeptidase 190 

termed OP-Tb (170), and REL1 (171), the RNA-editing ligase of the trypanosome's kinetoplast. It is 191 

unclear how suramin would pass the inner mitochondrial membrane, but suramin inhibited 192 

oxidative phosphorylation in mitochondrial preparations of the trypanosomatid Crithidia 193 

fasciculate (172). Suramin also appeared to inhibit cytokinesis in T. brucei, as indicated by the 194 

finding that suramin treatment resulted in an increased number of trypanosomes with two 195 

nuclei (173).  196 

 197 

Uptake routes of suramin into cells 198 

The negative charges of suramin (Figure 1) not only promote binding to various proteins, they also 199 

prevent diffusion across biological membranes. However, the majority of targets (Table 3) are 200 
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intracellular, and radiolabeled suramin was shown to be taken up by human endothelial and 201 

carcinoma cells (174, 175) and by T. brucei bloodstream forms (166, 176). Suramin is not a 202 

substrate of P-glycoprotein (177), nor of any other known transporter. Thus suramin must be 203 

imported by endocytosis. Mammalian cells can take up suramin in complex with serum albumin by 204 

receptor-mediated endocytosis (178). This had originally also been thought to happen in T. 205 

brucei (166). However, the trypanosomes do not take up albumin by receptor-mediated 206 

endocytosis (179), and LDL (low density lipoprotein) was proposed to act as the vehicle 207 

instead (176). Suramin bound to LDL and inhibited the binding and uptake of LDL, while LDL 208 

enhanced the uptake of suramin in bloodstream-form T. brucei (176). In contrast, overexpression in 209 

procyclic T. b. brucei of Rab4, a small GTPase involved in the recycling of endosomes, decreased 210 

suramin binding and uptake without affecting LDL binding or uptake (180). In the same study, 211 

overexpression of a mutant Rab5, which was locked in the active, GTP-bound form, increased LDL 212 

uptake without affecting suramin uptake (180). These findings indicated that, at least in the 213 

procyclic trypanosomes of the tsetse fly midgut, LDL and suramin are imported independently of 214 

each other. 215 

 The development of genome-wide RNAi screens in bloodstream-form T. brucei combined 216 

with next-generation sequencing offered new opportunities to address the genetics of drug 217 

resistance. This approach identified genes, silencing of which reduced the sensitivity to 218 

suramin (181). These included a number of genes encoding for endosomal and lysosomal proteins, 219 

in agreement with uptake of suramin through endocytosis. The invariant surface glycoprotein 220 

ISG75 was identified as a likely receptor of suramin since knock-down of ISG75 in bloodstream-221 

form T. brucei decreased suramin binding and suramin susceptibility (181). ISG75 is a surface 222 

protein of unknown function whose abundance is controlled by ubiquitination (182). Thus, there 223 

appear to be (at least) two pathways for receptor-mediated endocytosis of suramin in T. brucei 224 
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bloodstream forms: either directly with ISG75 as the receptor or, after binding of suramin to LDL, 225 

together with the LDL receptor. 226 

 227 

Conclusion 228 

Suramin remains controversial. Is its polypharmacology a liability or an asset? Is it toxic or 229 

protective? Dated or timeless? Whatever the verdict on suramin, there is hardly a molecule with as 230 

many biological activities. The list of potential targets is indeed impressive, and the publication 231 

stream on suramin is not stagnating. The large majority of papers is not about trypanosomes or 232 

trypanosomiasis (Figure 2). The list of potential targets has to be taken with a grain of salt, though, 233 

since the negative charges of suramin, and its promiscuity in protein binding, can cause all kinds of 234 

artefacts. Suramin can dissolve matrigel (183), resulting in a false positive signal in cell-based 235 

screening campaigns that use matrigel for support, e.g. for inhibitors of angiogenesis (183). On the 236 

other hand, suramin's high affinity to albumin (184) may give false negative results in cell-based 237 

tests that contain mammalian serum. But in spite of the various confounders, a number of different 238 

drug-target interactions for suramin have been experimentally validated, and are directly supported 239 

by crystal structures (Table 4). 240 

 Several routes of investigation on the bioactivities of suramin have culminated in clinical 241 

trials with healthy volunteers (i.e. phase I) or patients (i.e. phases II and III; Table 2). Yet, to our 242 

knowledge, none of these trials was a striking success, and it is unclear whether suramin will ever 243 

find medical applications outside the field of parasitology. However, molecules that act in a similar 244 

way than suramin may be identified via target-based screening once the mode of action is 245 

understood – new molecules that are more specific, less toxic, and possess better pharmacological 246 

properties than suramin. Thus it will be important to dissect the polypharmacology of suramin at the 247 

molecular level. We hope that the compiled list of targets (Table 3) will serve this purpose.  248 
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TABLES 833 

 834 

Table 1. Diseases and pathogens susceptible to suramin. 835 

 836 

Disease, pathogen 
Activity in 

cell culture 

Activity in 

animal model 

Activity in 

patient 

Parasitic infections    

     T. b. rhodesiense HAT x x x 

     T. b. gambiense HAT x x x 

     Surra, T. evansi x x n.a. 

     River blindness, O. volvulus x x x 

     Trypanosoma cruzi x   

     Leishmania spp. x   

     Plasmodium falciparum x   

Viral infections    

     Hepatitis  x x x 

     AIDS, HIV x  x 

     Herpes simplex x x  

     Chikungunya x x  

     Enterovirus 71 x x  

     Dengue x   

     Zika x   

     Ebola x   

Neoplastic diseases    

     Non-small cell lung cancer x x  

     Breast cancer x x  

     Bladder cancer x x  

     Brain tumors x x  

     Prostate cancer x x x 

Other uses    

     Snake bite x x  

     Arthritis x x  

     Autism n.a. x x 

 837 

  838 
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Table 2. Clinical trials with suramin. Trials with a registered NCT number are from 839 

ClinicalTrials.gov; others are from the literature. 840 

 841 

Registry ID Disease Phase Year 

NCT02508259 Autism spectrum disorders I, II 2015 

NCT01671332 Non-small cell lung cancer II 2012 

NCT01038752 Non-small cell lung cancer II 2010 

NCT00083109 Recurrent renal cell carcinoma I, II 2004 

NCT00066768 Recurrent non-small cell lung cancer I 2003 

NCT00054028 Recurrent breast cancer I, II 2002 

NCT00006929 Recurrent non-small cell lung cancer II 2000 

NCT00006476 Bladder cancer I 2000 

NCT00004073 Brain and central nervous system tumors II 1999 

NCT00002921 Adrenocortical carcinoma II 1997 

NCT00003038 Advanced solid tumors I 1997 

NCT00002723 Prostate cancer III 1996 

NCT00002881 Prostate cancer III 1996 

NCT00002652 Multiple myeloma and plasma cell neoplasm II 1995 

NCT00002639 Brain and central nervous system tumors II 1995 

NCT00001381 Bladder neoplasms, transitional cell carcinoma I 1994 

NCT00001266 Prostatic neoplasm II 1990 

NCT00001230 Filariasis observ. 1988 

(16) Solid tumors observ. 1987 

(17) AIDS observ. 1987 

(18) Hepatitis B observ. 1987 

 842 
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Table 3. Putative target proteins of suramin, biological processes and mechanisms. Suramin acts as 844 

an inhibitor or antagonist in all cases except for the pregnane X receptor and the ryanodine receptor. 845 

The mode of action against caspase is controversial. 846 

 847 

Putative target Reference 

Metabolism 
 

6-Phosphofructokinase (100) 

Fructose-l,6-bisphosphate aldolase (100) 

Glucose-6-phosphate isomerase (100) 

Glyceraldehyde-3-phosphate dehydrogenase (100) 

Glycerol-3-phosphate dehydrogenase (100, 139) 

Glycerol kinase  (100) 

Hexokinase (100) 

Phosphoglycerate kinase (100) 

Pyruvate kinase (101) 

Triose-phosphate isomerase (100) 

Succinic dehydrogenase (102) 

Galactokinase 493189* 

Glutaminase 624170* 

Glycerophosphate oxidase (139) 

Nucleoside triphosphate diphosphohydrolase 1 & 2 (125, 126, 140–143) 

Nucleotide pyrophosphatase/phosphodiesterase 1 & 3 (144) 

Nucleic acids 
 

DNA polymerase alpha (103, 104) 

DNA polymerase beta (103, 104) 

DNA polymerase gamma (103) 

DNA polymerase delta (104) 

DNA polymerase I (103, 104) 

Terminal deoxynucleotidyltransferase (103) 

DNA primase (103) 

DNA dependent RNA polymerase (103, 106) 

RNA dependent RNA polymerase (105) 

Reverse transcriptase (21, 103) 

Telomerase (67) 

RNAse H (145) 

Flavivirus RNA helicase (40, 107, 146) 

DNA Topoisomerase II (108) 

Tyrosyl-DNA phosphodiesterase 1 (147) 

Human antigen R (148) 

DNA-binding protein MCM10 (149) 

Epigenetics 
 

Chromobox protein homologue 1 beta 488953* 

Chromobox protein homologue 7 (109) 

Histone methyltransferases (110, 150) 

Precorrin-4 C(11)-methyltransferase (151) 

Sirtuin 1, 2, 5 (111, 112, 152)  
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Protease 
 

Kallikrein (121) 

Alpha Thrombin (71) 

Human neutrohphil cathepsing G (120) 

Human neutrophil elastase  (120) 

Human neutrophil proteinase 3 (120) 

Rhodesain (119) 

Caspases 1, 2, 8, 9, 10 (122, 123, 153, 154) 

Falcipain-2 (155) 

Extracellular matrix 
 

Hyaluronidase (156, 157) 

Iduronate sulfatase (157) 

-glucuronidase (157) 

Membrane channels and signaling 
 

Non-junctional connexin 43 hemichannels (89) 

Na+,K+-ATPase (124) 

Cystic fibrosis transmembrane regulator (158) 

Ryanodine receptor 1 (138) 

GABAA receptors (127, 128) 

P2X Purinergic receptors (94) 

P2Y Purinergic receptors (94) 

N-methyl-D-aspartate receptor (159) 

DNA-dependent protein kinase (113) 

Protein kinase C (114) 

Protein tyrosine phosphatases (117) 

VIP receptor (129) 

Follicle-stimulating hormone receptor (131) 

Pregnane X receptor (137) 

Diadenosine tetraphosphate hydrolase (160) 

Other 
 

Prion (PrpC) (136) 

Complement factors (121, 133–135) 

Phospholipase A2 (116, 161) 

Lysozyme (118) 

Antimicrobial Peptide CM15 (162) 

Ubiquitin carboxyl-terminal hydrolases 1 & 2 504865; 463106* 

HSP 60 chaperonin system (163, 164) 

GroEL chaperonin system (163, 164) 

*PubChem BioAssay, last retrieved 29.04.2019 848 

  849 
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Table 4. Solved structures of suramin complexed to target proteins. 850 

 851 

PDB id Protein Reference 

6CE2 Myotoxin I from Bothrops moojeni (75) 

4YV5 Myotoxin II from Bothrops moojeni (74) 

1Y4L Myotoxin II from Bothrops asper (116) 

3BJW Ecarpholin S from Echis carinatus (76) 

1RML Acid fibroblast growth factor (185) 

n.a. Human epidermal growth factor (hEGF) (186) 

4X3U CBX7 chromodomain (109) 

3BF6, 2H9T Human thrombin (187) 

2NYR Human sirtuin homolog 5 (112) 

3PP7 Leishmania mexicana pyruvate kinase (101) 

3GAN Arabidopsis thaliana At3g22680 n.a. 

3UR0 Murine norovirus RNA-dependent RNA polymerase (105) 

4J4V Pentameric bunyavirus nucleocapsid protein (188) 

4J4R Hexameric bunyavirus nucleocapsid protein (188) 
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FIGURE LEGENDS 854 

 855 

Figure 1. Suramin structure and medicinal chemistry parameters. Except for its good solubility in 856 

water, suramin lacks lead-like properties as defined e.g. by Lipinsky's rule of 5. 857 

 858 

Figure 2. Publications on suramin in PubMed. Cumulative numbers are shown for papers on 859 

suramin and trypanosomes or trypanosomiasis (black, search term "trypanosom*"), cancer (red, 860 

"cancer OR tumor"), viruses (yellow, "virus OR viral OR hiv OR aids"), and toxins (green, "toxin 861 

OR venom"). Other papers on suramin are shown in beige. There is no saturation yet. And it is 862 

surprising that only a minority of the publications on suramin actually deal with trypanosomes. 863 
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