Exloo – LOFAR: Kosmisch Exloo + Jim Lee – HAARP, HALO, and Celestial Resonations

LOFAR: Kosmisch Exloo

LOFAR

LOFAR

Exloo ligt het zogenaamde LOFAR gebied.

LOFAR is een radiotelescoop, die werkt met de laagste frequenties, die vanaf de aarde waargenomen kunnen worden. Met LOFAR kunnen astronomen miljarden jaren terug kijken, naar de zogenaamde ‘Dark Ages’, de periode voordat de eerste sterren en sterrenstelsels gevormd werden.

LOFAR is de eerste radiotelescoop, die gebruik maakt van een groot aantal kleine sensoren in plaats van een klein aantal grote schotels, zoals tot nu toe gebruikelijk was. De belangrijkste redenen om deze nieuwe richting in te slaan zijn:

– In het bereik waarin LOFAR werkt (laagfrequente radiosignalen), zijn grote aantallen simpele en goedkope dipool antennes, opgesteld in grote meetclusters, even bruikbaar als grote en zeer kostbare schoteltelescopen.

– LOFAR kan elektronisch gericht worden, zodat een wisseling van kijkrichting vrijwel onmiddellijk kan plaats vinden. De kosten voor het bouwen en onderhouden van de telescoop zijn minimaal aangezien hij geen bewegende delen heeft.

– LOFAR kan in meerdere richtingen tegelijk kijken, zodat verschillende waarnemingen tegelijkertijd gedaan kunnen worden.
Het instrument heeft een grote operationele flexibiliteit, onder andere omdat snel tussen waarnemingen geschakeld kan worden.

De LOFAR radiotelescoop bestaat uit een groot aantal goedkope antennes van twee types: de Low Band Antenne (LBA), die signalen opvangt tussen 10 en 90 MHz en de High Band Antenne (HBA), die opereert tussen 110 en 250 MHz. Deze ‘sensoren’ zijn geclusterd in antenne stations.

In het noordoosten van Nederland zijn 36 van dergelijke stations gerealiseerd, verspreid over een gebied van ongeveer honderd vierkante kilometer. De helft hiervan (18) staat in een kerngebied van twee bij drie kilometer tussen de dorpen Exloo, Buinen en Buinerveen. De andere helft is verspreid rond deze kern, waarbij de afstand tot de kern kan oplopen tot 50 km. Verder zijn stations geplaatst in Duitsland, Zweden, het Verenigd Koninkrijk en Frankrijk. Deze stations worden beheerd door de instituten, waarin ze zijn ondergebracht. De grootste afstand tussen de stations in Europa bedraagt ongeveer 1500 kilometer.

In het bereik waarin LOFAR werkt (laagfrequente radiosignalen), zijn grote aantallen simpele en goedkope dipool antennes, opgesteld in grote meetclusters, even bruikbaar als grote en zeer kostbare schoteltelescopen.

Natuurontwikkeling LOFAR bij Exloo

Het kerngebied van LOFAR, met daarin de sensoren, is ook ontwikkeld als natuurgebied. Het riviertje en andere waterlopen, die door het gebied stromen, zijn verlegd om de ontwikkeling te bevorderen van een moeraslandschap met daarin een grote verscheidenheid aan grassen en kruiden, die aantrekkelijk zijn voor diverse soorten vogels, vlinders en insecten. Meer dan 360.000 kubieke meter grond is verzet om een moeras met stroompjes en beekjes te creëren, met hoger gelegen plekken waar de LOFAR stations staan. Door de aanleg van dit natuurgebied zal er verder weinig ontwikkeling plaatsvinden in het gebied, een wens van zowel wetenschappers als milieuorganisaties.

Lofar 1 (foto Top-foto Assen)

Lofar 1 (foto Top-foto Assen)

Lofar 2 (foto Top-foto Assen)
Lofar 2 (foto Top-foto Assen)

https://www.exloo.info/omgeving/lofar

https://www.exloo.info/omgeving/lofar/127-lofar-kosmisch-exloo

http://www.lofarzone.nl/

HAARP, HALO, and Celestial Resonations

The High Frequency Active Auroral Research Program (HAARP, https://climateviewer.com/2014/09/19/haarp-worlds-sexiest-energy-weapon/) isn’t your grandfather’s HAM radio. Although this 3.6 million watt radio transmitter is best known for its ability to create ELF waves to signal submarines, HAARP is also used as a radio telescope to probe our Moon, Sun, coronal mass ejections, comets, and other space phenomena.

Generation of ELF/VLF Waves:

Much of the research at the facility is focused on the generation of ELF/VLF (https://climateviewer.com/2014/10/11/haarp-elf-generation-mass-mind-control/) because of the value of these frequencies to the Navy for undersea applications. Propagating radio waves in the ELF/VLF frequency range are generated at the lower edge of the ionosphere when high-power HF radio waves modulate the conductivity of the ionospheric D and E layers in the presence of a background or “electro-jet” current. The practical utility of this technique for communication systems is dependent on improving the efficiency and reliability of this process. A recent experiment was performed at HAARP to study the scaling of the ionospherically generated ELF signal with power transmitted from the HF array. Results were in excellent agreement with computer simulations confirming that the ELF power increases with the square of the incident HF power. Furthermore, no saturation effects were observed indicating that greater ELF generation efficiency is possible with greater incident power. (1)

1250 By 1250 feet

1250 By 1250 feet

http://www.e-fermat.org/files/multimedias/1534476fcbcc57.pdf

Optical Emissions:

The interaction of high-power radio waves with the ionospheric can produce faint optical emissions at specific wavelengths. Recent experiments at the HAARP Gakona Facility investigated the role of the HF beam pointing direction on the production of artificial airglow. The exciting result was that by pointing the HF beam directly along a geomagnetic field line, artificial emissions of greater than 200 Rayleighs (R) at 630.0 nm and greater than 50 R at 557.7 nm could be produced. This intensity was nearly an order of magnitude larger than that produced by heating directly overhead. Weak emissions of approximately 10 R were observed with effective radiated power (ERP) levels as low as 2 MW. These measurements have been repeated in other research campaigns with observations over a wide range of ionospheric conditions.

Figure 6 shows the artificially generated emission at 557.7 nm that was obtained using the NRL CCD imager during one of the experiments. (The imager used in this research uses a high resolution, cooled CCD. It was developed by NRL’s Plasma Physics Division and on loan to HAARP for the experiment.) (1)

HAARP Artificial Airglow

HAARP Artificial Airglow

In a bistatic configuration, HAARP directs signals at heavenly bodies and a secondary site, usually a receiving antenna array, receives echos from these broadcasts. In the following research projects we will see HAARP team up with the Long Wavelength Array (LWA) in New Mexico, the NASA WIND satellite (HAARP-WIND), and the Low Frequency Array LOFAR (HALO).

Some of these experiments have been done in collaboration with the NASA-WIND satellite and its HF radio wave receiver (the WAVES experiment). The unique orbit of WIND has provided a wide range of radial distances from Earth, including lunar flybys, over which we are able to study the interactions of radio waves transmitted from HAARP. The HAARP-WIND bistatic configuration has allowed new techniques for conducting HF radar experiments beyond the Earth’s ionosphere. Other experiments are to be conducted with ground-based receiving arrays, such as the Wink. HF array, operated by the University of Texas. We are also planning future experiments utilizing the Low Frequency Array (LOFAR) that will provide a large collecting area array for radio astronomical research. (2)

HAARP-WAVES Lunar Radar Experiment

A specific example of a recent experiment is given in Fig. 3 .and WIND spacecraft on September 13, 2001, when the :spacecraft was approaching the Moon to use lunar gravity for orbit perturbation. In a 2-hr interval, when the spacecraft was about 40,000 km from the lunar surface, the HAARP array illuminated the Moon with a series of 100-ms pulses at 960 kilowatts at a frequency of 8.075 MHz.

During the experiment, the HAARP transmission beam followed the Moon’s apparent motion across the sky in order to keep both WIND and the Moon within the radar beam Thus, the WAVES radio receiver on board WIND detected both the direct HAARP pulses as they passed by the spacecraft on their way to the Moon and the subsequent echo pulses from the lunar surface. (2)

Direct and echo radar pulses measured by the WAVES radio receiver

Direct and echo radar pulses measured by the WAVES radio receiver

HAARP WAVES lunar radar experiment

HAARP-WAVES Lunar Radar Experiment

HAARP-LWA Moon Bounce Experiment

The HF Active Auroral Research Program (HAARP) in Alaska, and the Long Wavelength Array (LWA) in New Mexico, conducted a bistatic low frequency lunar radar experiment in October 2007. A brief description of the experiment and an example of the lunar echo radio waves received may be found in this press release. (3) HAARP and LWA are planning an additional lunar echo experiment for 19 and 20 January 2008. Interested radio amateurs and short wave listeners are invited to participate in this experiment by listening for the lunar echoes and submitting reports. The following table shows the planned schedule, where dates and times are in Universal Time (UTC): HAARP-LWA Experiment Schedule

Date From To Transmitted Frequency
(UTC) UTC Hr:Min) (MHz)

19 January 2008 05:00 06:00 6.7925
06:00 07:00 7.4075

20 January 2008 06:30 07:30 6.7925
07:30 08:30 7.4075

Based on the previous experiment, we believe it should be possible to hear the lunar echoes with a standard communications receiver and an antenna as simple as a 40 meter dipole. If you have a 40 meter beam antenna, point it in the direction of the moon. Other antennas may also yield acceptable results. The format for the transmissions will follow a five second cycle as shown in the following figure. (4)

HAARP Moon pulse echo

HAARP Moon pulse echo

The HAARP transmitter will transmit for the first two seconds of the five second cycle. The next three seconds will be quiet to listen for the lunar echo. Then HAARP will transmit again for two seconds, repeating the cycle for the first hour using the first HF frequency. During the second hour, this periodic five second cycle will be repeated but using a different HF frequency as shown in the table above. Transmissions from HAARP during each two-second period, will be carrier only (no modulation). Therefore, listeners should use the CW mode on their receiver to hear HAARP and the lunar echo. We hope to operate this experiment using the frequencies given in the table above. However, depending on frequency occupancy at the time of operation, it may be necessary to adjust the frequency slightly. Depending on ionospheric conditions, it may or may not be possible to hear the HAARP transmission via skywave. If conditons allow, the HAARP transmission will always be heard during the first two seconds after the five second cycle starts, for example, between 05:00:00 and 05:00:02 and again between 05:00:05 and 05:00:07. The lunar echoes will occur during the three second “quiet” period after HAARP transmits, for example during the interval 05:00:02 until 05:00:05 and again between 05:00:07 until 05:00:10. Depending on a number of factors, you may hear HAARP, the lunar echo, both or neither. We are interested in receiving signal reports from radio amateurs who may be able to detect, or not detect, the lunar echo or the transmitted skywave pulse from HAARP. It will be helpful if your report includes your call sign and the type and location of your receiving equipment and antennas. (4)(5)

HAARP

LWA Long Wavelength Array Moon Echo

LWA Long Wavelength Array Moon Echo

LWA Long Wavelength Array

LWA Long Wavelength Array

https://www.youtube.com/watch?v=L5E2ntIxAsc

HALO Solar Radar (HAARP + LOFAR)

LOFAR is the Low Frequency Array for radio astronomy, built by the Netherlands astronomical foundation ASTRON and operated by ASTRON’s radio observatory. LOFAR will be the largest connected radio telescope ever built, using a new concept based on a vast array of omni-directional antennas. … LOFAR was officially opened on 12 June 2010 by Queen Beatrix of the Netherlands. Regular observations started in December 2012. (6)

LOFAR Superterp

LOFAR Superterp

The possibility that the ionosphere could be modified by powerful radio waves was first noted by Ginzburg and Gurevich (1). The early theoretical work concentrated on the heating caused by the powerful radio wave, but later the emphasis gradually changed to plasma instabilities, turbulence, and plasma structuring. The first ionospheric modification facility was built in 1961 near Moscow, Russia, followed by facilities in Colorado, in Puerto Rico, at several additional sites in the former Soviet Union, in Norway, and in Alaska. AIT is currently being studied at research facilities located at middle (Sura, Russia) and high (EISCAT, Norway; HAARP and HIPAS, Alaska, USA) latitudes. In addition, a low latitude facility (Arecibo, Puerto Rico, USA) was active until 1998 and is now being rebuilt. Under construction in Europe is the huge LOFAR (Low Frequency Array), financed by the Dutch government. This 10–240 MHz radio telescope is of a new digital type which ensures maximum flexibility and cost effectiveness, allowing it to become the world’s largest and most efficient instrument for low-frequency radio studies of space. LOFAR is being supplemented by a likewise digital and cost effective infrastructure in Southern Sweden called LOIS (LOFAR Outrigger in Scandinavia). (7)

HALO Solar Radar

HALO Solar Radar

http://www.ovsa.njit.edu/data/web/PPT_Files/rodriguez.pdf

Of particular interest is to use LOFAR in combination with so called ionospheric HF interaction facilities. Such facilities are relatively simple to build, using commercially available HF radio transmitters and antennas. Existing systems today include the high-latitude facilities HAARP and HIPAS, Alaska, and EISCAT/Heating (Tromso), Norway, and the mid-latitude Sura facility, Russia. For nearly 30 years, a low-latitude facility was available at the Arecibo Observatory, Puerto Rico. A few years ago it was destroyed in a hurricane. There are now advanced plans to build a new HF interaction facility at Arecibo. Similar facilities have been proposed for equatorial latitudes both in Africa and in Asia. We emphasize that a major objective for the future space physics is to further investigate into the possibility that human activities near the Earth may give rise to hitherto unidentified anthropogenic effects. (8)

These experiments are the tip of a very large iceberg. Even though HAARP’s future may be in jeopardy, new Sky Heaters like the 10 megawatt EISCAT 3D upgrade to the Tromso heater are on the not-to-distant horizon. Welcome to the wild word of science non-fiction. (9)

https://www.youtube.com/watch?v=72cjB6r59Fg

The E3D instrument will consist of 5 phased-array antenna fields for transmission (Tx) and reception (Rx) of 233 MHz radio waves. Total transmitted power at the core site will be 10 MW and at least one remote site will have transmission capability of about 1 MW. Digital control of the transmission and low-level digitization of the received signal will allow for instantaneous beam-swinging, and multiple simultaneous transmit and receive beams, without motion of mechanical structures. The sites will be equipped with smaller outlying antenna arrays that will facilitate aperture synthesis imaging to acquire sub-beam transverse spatial resolution. This will give the E3D radar unmatched power agility and flexibility. The baseline design listed below suggests a core site that will be located close to the intersection of the Swedish, Norwegian and Finnish borders and four receiving sites located within approximately 50 to 250 km from the core: (10)

E3D concept System with Antenna & Transmitter Characteristics plus Capabilities

System with Antenna & Transmitter Characteristics plus Capabilities

The E3D concept permits continuous pre-scheduled operations and fast and automatic switching of observation modes. It offers advanced capabilities to study atmospheric phenomena on scales of hundreds of kilometers to hundreds of meters. Atmospheric monitoring at 70-1200 km altitude is only limited by power consumption and data storage. (10)

Lofar Sky Heaters

LOFAR Sky Heaters (foto Nostradam)

Check out HAARP and the Sky Heaters, as well as the LOFAR Array on ClimateViewer 3D!
http://climateviewer.org/index.html?layersOn=f12,f09,f10,f16

References
(1) http://www.dtic.mil/dtic/tr/fulltext/u2/a475361.pdf – Naval Research Lab Review 2004
(2) http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA514972 – High Frequency Radar Astronomy With HAARP
(3) http://www.nrl.navy.mil/media/news-releases/2008/scientists-detect-lowest-frequency-radar-echo-from-the-moon – Scientists Detect Lowest Frequency Radar Echo From the Moon
(4) http://web.archive.org/web/20100418054410/ http://www.haarp.alaska.edu/haarp/mbann.html
(5) http://web.archive.org/web/20080724034637/ http://www.haarp.alaska.edu/haarp/mbcalc.html – Calculation of the Expected Lunar Echo Receive Signal Strength
(6) http://en.wikipedia.org/wiki/LOFAR – LOFAR on Wikipedia
(7) http://arxiv-web3.library.cornell.edu/pdf/0707.4506.pdf – Nonlinear physics of the ionosphere and LOIS/LOFAR
(8) http://www.mso.anu.edu.au/~fbriggs/LOFAR_SciApp_1.0.pdf – LOFAR Scientific Applications, M.P. van Haarlem – 07-03-01
(9) https://www.eiscat3d.se/status2012 – EISCAT_3D description and status (October 2012)
(10) https://www.eiscat3d.se/status2012/baseline – EISCAT_3D Baseline design and performance

This article is part of the series HAARP and the Sky Heaters: https://climateviewer.com/haarp/
Also check out: http://WeatherModificationHistory.com

ClimateViewer, Sunday, Oct 5, 2014

https://climateviewer.com/2014/10/05/haarp-halo-celestial-resonations/

Meer informatie:
https://robscholtemuseum.nl/terrence-aym-haarp-unleashes-tesla-death-ray/
https://robscholtemuseum.nl/latest-technology-final-warning-its-happening-in-america-this-video-is-blocked-in-almost-every-country-2017-2018/